{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "70594b81",
   "metadata": {},
   "source": [
    "# Data Inspection"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6fdaa7fa",
   "metadata": {},
   "source": [
    "In this book, we'll be exploring the [NYC real estate dataset](https://www.kaggle.com/new-york-city/nyc-property-sales) provided by the City of New York and sourced from Kaggle. \n",
    "\n",
    "<img src=\"https://media.giphy.com/media/csxOkD7hISGWE0vQra/giphy.gif\"/>\n",
    "\n",
    "The dataset includes properties that were sold between September 2016 and September 2017. Each row represents the sale of a property, while the columns are features that describe the property. Here is a list of the columns:\n",
    "\n",
    "- Borough\n",
    "- Neighborhood \n",
    "- Building class category \n",
    "- Tax class at present\n",
    "- Block\n",
    "- Lot \n",
    "- Ease-ment \n",
    "- Building class at present \n",
    "- Address\n",
    "- Apartment number \n",
    "- Zip code \n",
    "- Residential units\n",
    "- Commercial units \n",
    "- Total units \n",
    "- Land square feet\n",
    "- Gross square feet \n",
    "- Year built \n",
    "- Tax class at time of sale \n",
    "- Building class at time of sale \n",
    "- Sale price \n",
    "- Sale date\n",
    "\n",
    "For the official definitions of each of these columns, refer to the [Data Defintions](AP_nyc_data_definitions.md) in the Appendix. "
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a5418f7f",
   "metadata": {},
   "source": [
    "## 1) Loading in the data\n",
    "\n",
    "Before we get started, the very first thing we need to do is import the `pandas` package into our environment so that it's readily available. Let's give it the alias of \"pd\" so that we don't have to write out \"pandas\" every time we call a function."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "e0dad2f7",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "66fc1f31",
   "metadata": {},
   "source": [
    "In order to explore the NYC real estate dataset, we need to load it into our environment. We can do this using the Pandas [`read_csv()`](https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html) function. Let's call our new dataframe `\"df\"` (short for dataframe)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "b3e1b9c8",
   "metadata": {},
   "outputs": [],
   "source": [
    "df = pd.read_csv(\"data/nyc_real_estate.csv\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "c2f39e2e",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Index(['BOROUGH', 'NEIGHBORHOOD', 'BUILDING CLASS CATEGORY',\n",
       "       'TAX CLASS AT PRESENT', 'BLOCK', 'LOT', 'EASE-MENT',\n",
       "       'BUILDING CLASS AT PRESENT', 'ADDRESS', 'APARTMENT NUMBER', 'ZIP CODE',\n",
       "       'RESIDENTIAL UNITS', 'COMMERCIAL UNITS', 'TOTAL UNITS',\n",
       "       'LAND SQUARE FEET', 'GROSS SQUARE FEET', 'YEAR BUILT',\n",
       "       'TAX CLASS AT TIME OF SALE', 'BUILDING CLASS AT TIME OF SALE',\n",
       "       'SALE PRICE', 'SALE DATE'],\n",
       "      dtype='object')"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.columns"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "cf88c36e",
   "metadata": {},
   "source": [
    "## 2) Checking the shape and size of our dataset \n",
    "\n",
    "As a data scientist, one of the first things we want to know about a dataset is how big it is. How many rows and columns are we dealing with? Let's figure out the \"shape\" of our dataframe:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "e24658dc",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(84548, 21)"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.shape"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5cbd0ce7",
   "metadata": {},
   "source": [
    "`df.shape` returns the number of rows and number of columns of a dataframe:\n",
    "\n",
    "```\n",
    "(n_rows, n_columns)\n",
    "```\n",
    "\n",
    "Our dataset has ~84.5K rows, which means that we have data on ~84.5K property sales in NYC."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ae9967cf",
   "metadata": {},
   "source": [
    "### Number of rows"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d3fbbf81",
   "metadata": {},
   "source": [
    "The length of a dataset represents the number of rows so if you're only interested in knowing how many rows we're dealing with, you can simply apply the `len()` function:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "ca434b60",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "84548"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(df)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e997c146",
   "metadata": {},
   "source": [
    "You can also get the number of rows from `df.shape` by accessing the first element of the `df.shape`'s output:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "3224a0b3",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "84548"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.shape[0]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4b4ba838",
   "metadata": {},
   "source": [
    "### Number of columns"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e0c0089c",
   "metadata": {},
   "source": [
    "To get the number of columns of a dataset, you can first get the list of a dataset's columns:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "8c9a760a",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Index(['BOROUGH', 'NEIGHBORHOOD', 'BUILDING CLASS CATEGORY',\n",
       "       'TAX CLASS AT PRESENT', 'BLOCK', 'LOT', 'EASE-MENT',\n",
       "       'BUILDING CLASS AT PRESENT', 'ADDRESS', 'APARTMENT NUMBER', 'ZIP CODE',\n",
       "       'RESIDENTIAL UNITS', 'COMMERCIAL UNITS', 'TOTAL UNITS',\n",
       "       'LAND SQUARE FEET', 'GROSS SQUARE FEET', 'YEAR BUILT',\n",
       "       'TAX CLASS AT TIME OF SALE', 'BUILDING CLASS AT TIME OF SALE',\n",
       "       'SALE PRICE', 'SALE DATE'],\n",
       "      dtype='object')"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.columns"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b953bf08",
   "metadata": {},
   "source": [
    "Then, get the length of the column list:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "7012387d",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "21"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(df.columns)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1bac2d57",
   "metadata": {},
   "source": [
    "Alternatively, you can also get the number of columns by getting the second element of `df.shape`'s output:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "cec122cc",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "21"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.shape[1]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2317a920",
   "metadata": {},
   "source": [
    "### Size\n",
    "\n",
    "What if we want to how many data points (\"cells\") are in the dataset? This is considered the **size** of a dataframe. \n",
    "\n",
    "$\\text{number of data points} = \\text{size} = \\text{n_rows} \\times \\text{n_cols}$\n",
    "\n",
    "You can get a dataframe's size using `.size`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "94585197",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "1775508"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.size"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "af96bbab",
   "metadata": {},
   "source": [
    "There are 1,775,508 data points in our dataset! "
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2b19a8cf",
   "metadata": {},
   "source": [
    "Let's check that `df.size` equal `n_rows` * `n_cols`:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "9b6398d9",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "True"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.size == df.shape[0] * df.shape[1]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "cb313c1e",
   "metadata": {},
   "source": [
    "```{note}\n",
    "Since Pandas stores data in-memory, it is not optimized to work with very large datasets. The maximum amount of data that Pandas can handle depends on 2 things:\n",
    "\n",
    "- The type of data you’re working with (e.g., integers and floats are more space-efficient than strings)\n",
    "- RAM of your machine. The larger the memory, the more data you’ll be able to work with. \n",
    "\n",
    "If your dataset is too big for Pandas to handle, you’ll get a `MemoryError`. There are several ways to get around this problem, as described in the [Pandas documentation](https://pandas.pydata.org/pandas-docs/stable/user_guide/scale.html#use-other-libraries), including splitting the dataset into smaller chunks or using [Dask](https://dask.org/), a parallel computing library instead. \n",
    "```"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "642159c4",
   "metadata": {},
   "source": [
    "## 3) Viewing the data\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2e9a9e32",
   "metadata": {},
   "source": [
    "Now, let's take a peek at our data to get a sense of what it looks like 👀. There are 3 Pandas methods that you can use to inspect data:\n",
    "\n",
    "1. `.head()`: viewing first x rows \n",
    "2. `.tail()`: viewing last x rows \n",
    "3. `.sample()`: viewing random x rows \n",
    "\n",
    "If you don't mind viewing a lot of data at once, you can simply print `df` which will return the first 5 rows and last 5 rows of the dataframe."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f18e6426",
   "metadata": {},
   "source": [
    "### First $n$ rows\n",
    "\n",
    "By default, `df.head()` returns the first 5 rows but you can customize this by defining `n` rows that you want to return inside of the parentheses. For example, `df.head(n=3)` would return 3 rows and `df.head(n=7)` would return 7 rows. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "f050b32c",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>BOROUGH</th>\n",
       "      <th>NEIGHBORHOOD</th>\n",
       "      <th>BUILDING CLASS CATEGORY</th>\n",
       "      <th>TAX CLASS AT PRESENT</th>\n",
       "      <th>BLOCK</th>\n",
       "      <th>LOT</th>\n",
       "      <th>EASE-MENT</th>\n",
       "      <th>BUILDING CLASS AT PRESENT</th>\n",
       "      <th>ADDRESS</th>\n",
       "      <th>APARTMENT NUMBER</th>\n",
       "      <th>...</th>\n",
       "      <th>RESIDENTIAL UNITS</th>\n",
       "      <th>COMMERCIAL UNITS</th>\n",
       "      <th>TOTAL UNITS</th>\n",
       "      <th>LAND SQUARE FEET</th>\n",
       "      <th>GROSS SQUARE FEET</th>\n",
       "      <th>YEAR BUILT</th>\n",
       "      <th>TAX CLASS AT TIME OF SALE</th>\n",
       "      <th>BUILDING CLASS AT TIME OF SALE</th>\n",
       "      <th>SALE PRICE</th>\n",
       "      <th>SALE DATE</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>1</td>\n",
       "      <td>ALPHABET CITY</td>\n",
       "      <td>07 RENTALS - WALKUP APARTMENTS</td>\n",
       "      <td>2A</td>\n",
       "      <td>392</td>\n",
       "      <td>6</td>\n",
       "      <td></td>\n",
       "      <td>C2</td>\n",
       "      <td>153 AVENUE B</td>\n",
       "      <td></td>\n",
       "      <td>...</td>\n",
       "      <td>5</td>\n",
       "      <td>0</td>\n",
       "      <td>5</td>\n",
       "      <td>1633</td>\n",
       "      <td>6440</td>\n",
       "      <td>1900</td>\n",
       "      <td>2</td>\n",
       "      <td>C2</td>\n",
       "      <td>6625000</td>\n",
       "      <td>2017-07-19 00:00:00</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>1</td>\n",
       "      <td>ALPHABET CITY</td>\n",
       "      <td>07 RENTALS - WALKUP APARTMENTS</td>\n",
       "      <td>2</td>\n",
       "      <td>399</td>\n",
       "      <td>26</td>\n",
       "      <td></td>\n",
       "      <td>C7</td>\n",
       "      <td>234 EAST 4TH   STREET</td>\n",
       "      <td></td>\n",
       "      <td>...</td>\n",
       "      <td>28</td>\n",
       "      <td>3</td>\n",
       "      <td>31</td>\n",
       "      <td>4616</td>\n",
       "      <td>18690</td>\n",
       "      <td>1900</td>\n",
       "      <td>2</td>\n",
       "      <td>C7</td>\n",
       "      <td>-</td>\n",
       "      <td>2016-12-14 00:00:00</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>1</td>\n",
       "      <td>ALPHABET CITY</td>\n",
       "      <td>07 RENTALS - WALKUP APARTMENTS</td>\n",
       "      <td>2</td>\n",
       "      <td>399</td>\n",
       "      <td>39</td>\n",
       "      <td></td>\n",
       "      <td>C7</td>\n",
       "      <td>197 EAST 3RD   STREET</td>\n",
       "      <td></td>\n",
       "      <td>...</td>\n",
       "      <td>16</td>\n",
       "      <td>1</td>\n",
       "      <td>17</td>\n",
       "      <td>2212</td>\n",
       "      <td>7803</td>\n",
       "      <td>1900</td>\n",
       "      <td>2</td>\n",
       "      <td>C7</td>\n",
       "      <td>-</td>\n",
       "      <td>2016-12-09 00:00:00</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>1</td>\n",
       "      <td>ALPHABET CITY</td>\n",
       "      <td>07 RENTALS - WALKUP APARTMENTS</td>\n",
       "      <td>2B</td>\n",
       "      <td>402</td>\n",
       "      <td>21</td>\n",
       "      <td></td>\n",
       "      <td>C4</td>\n",
       "      <td>154 EAST 7TH STREET</td>\n",
       "      <td></td>\n",
       "      <td>...</td>\n",
       "      <td>10</td>\n",
       "      <td>0</td>\n",
       "      <td>10</td>\n",
       "      <td>2272</td>\n",
       "      <td>6794</td>\n",
       "      <td>1913</td>\n",
       "      <td>2</td>\n",
       "      <td>C4</td>\n",
       "      <td>3936272</td>\n",
       "      <td>2016-09-23 00:00:00</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>1</td>\n",
       "      <td>ALPHABET CITY</td>\n",
       "      <td>07 RENTALS - WALKUP APARTMENTS</td>\n",
       "      <td>2A</td>\n",
       "      <td>404</td>\n",
       "      <td>55</td>\n",
       "      <td></td>\n",
       "      <td>C2</td>\n",
       "      <td>301 EAST 10TH   STREET</td>\n",
       "      <td></td>\n",
       "      <td>...</td>\n",
       "      <td>6</td>\n",
       "      <td>0</td>\n",
       "      <td>6</td>\n",
       "      <td>2369</td>\n",
       "      <td>4615</td>\n",
       "      <td>1900</td>\n",
       "      <td>2</td>\n",
       "      <td>C2</td>\n",
       "      <td>8000000</td>\n",
       "      <td>2016-11-17 00:00:00</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>5 rows × 21 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "   BOROUGH   NEIGHBORHOOD                      BUILDING CLASS CATEGORY  \\\n",
       "0        1  ALPHABET CITY  07 RENTALS - WALKUP APARTMENTS                \n",
       "1        1  ALPHABET CITY  07 RENTALS - WALKUP APARTMENTS                \n",
       "2        1  ALPHABET CITY  07 RENTALS - WALKUP APARTMENTS                \n",
       "3        1  ALPHABET CITY  07 RENTALS - WALKUP APARTMENTS                \n",
       "4        1  ALPHABET CITY  07 RENTALS - WALKUP APARTMENTS                \n",
       "\n",
       "  TAX CLASS AT PRESENT  BLOCK  LOT EASE-MENT BUILDING CLASS AT PRESENT  \\\n",
       "0                   2A    392    6                                  C2   \n",
       "1                    2    399   26                                  C7   \n",
       "2                    2    399   39                                  C7   \n",
       "3                   2B    402   21                                  C4   \n",
       "4                   2A    404   55                                  C2   \n",
       "\n",
       "                  ADDRESS APARTMENT NUMBER  ...  RESIDENTIAL UNITS  \\\n",
       "0            153 AVENUE B                   ...                  5   \n",
       "1   234 EAST 4TH   STREET                   ...                 28   \n",
       "2   197 EAST 3RD   STREET                   ...                 16   \n",
       "3     154 EAST 7TH STREET                   ...                 10   \n",
       "4  301 EAST 10TH   STREET                   ...                  6   \n",
       "\n",
       "   COMMERCIAL UNITS  TOTAL UNITS  LAND SQUARE FEET GROSS SQUARE FEET  \\\n",
       "0                 0            5              1633              6440   \n",
       "1                 3           31              4616             18690   \n",
       "2                 1           17              2212              7803   \n",
       "3                 0           10              2272              6794   \n",
       "4                 0            6              2369              4615   \n",
       "\n",
       "  YEAR BUILT  TAX CLASS AT TIME OF SALE  BUILDING CLASS AT TIME OF SALE  \\\n",
       "0       1900                          2                              C2   \n",
       "1       1900                          2                              C7   \n",
       "2       1900                          2                              C7   \n",
       "3       1913                          2                              C4   \n",
       "4       1900                          2                              C2   \n",
       "\n",
       "  SALE PRICE            SALE DATE  \n",
       "0    6625000  2017-07-19 00:00:00  \n",
       "1        -    2016-12-14 00:00:00  \n",
       "2        -    2016-12-09 00:00:00  \n",
       "3    3936272  2016-09-23 00:00:00  \n",
       "4    8000000  2016-11-17 00:00:00  \n",
       "\n",
       "[5 rows x 21 columns]"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.head()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "be072519",
   "metadata": {},
   "source": [
    "### Last $n$ rows\n",
    "\n",
    "`df.tail()` does the opposite of `df.head()` - it returns the last 5 rows of a dataframe rather than the first 5. Similarly, you can specify how many rows you want to return by passing in the number inside the parentheses:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "7a48981d",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>BOROUGH</th>\n",
       "      <th>NEIGHBORHOOD</th>\n",
       "      <th>BUILDING CLASS CATEGORY</th>\n",
       "      <th>TAX CLASS AT PRESENT</th>\n",
       "      <th>BLOCK</th>\n",
       "      <th>LOT</th>\n",
       "      <th>EASE-MENT</th>\n",
       "      <th>BUILDING CLASS AT PRESENT</th>\n",
       "      <th>ADDRESS</th>\n",
       "      <th>APARTMENT NUMBER</th>\n",
       "      <th>...</th>\n",
       "      <th>RESIDENTIAL UNITS</th>\n",
       "      <th>COMMERCIAL UNITS</th>\n",
       "      <th>TOTAL UNITS</th>\n",
       "      <th>LAND SQUARE FEET</th>\n",
       "      <th>GROSS SQUARE FEET</th>\n",
       "      <th>YEAR BUILT</th>\n",
       "      <th>TAX CLASS AT TIME OF SALE</th>\n",
       "      <th>BUILDING CLASS AT TIME OF SALE</th>\n",
       "      <th>SALE PRICE</th>\n",
       "      <th>SALE DATE</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>84546</th>\n",
       "      <td>5</td>\n",
       "      <td>WOODROW</td>\n",
       "      <td>22 STORE BUILDINGS</td>\n",
       "      <td>4</td>\n",
       "      <td>7100</td>\n",
       "      <td>28</td>\n",
       "      <td></td>\n",
       "      <td>K6</td>\n",
       "      <td>2730 ARTHUR KILL ROAD</td>\n",
       "      <td></td>\n",
       "      <td>...</td>\n",
       "      <td>0</td>\n",
       "      <td>7</td>\n",
       "      <td>7</td>\n",
       "      <td>208033</td>\n",
       "      <td>64117</td>\n",
       "      <td>2001</td>\n",
       "      <td>4</td>\n",
       "      <td>K6</td>\n",
       "      <td>11693337</td>\n",
       "      <td>2016-12-21 00:00:00</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>84547</th>\n",
       "      <td>5</td>\n",
       "      <td>WOODROW</td>\n",
       "      <td>35 INDOOR PUBLIC AND CULTURAL FACILITIES</td>\n",
       "      <td>4</td>\n",
       "      <td>7105</td>\n",
       "      <td>679</td>\n",
       "      <td></td>\n",
       "      <td>P9</td>\n",
       "      <td>155 CLAY PIT ROAD</td>\n",
       "      <td></td>\n",
       "      <td>...</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>10796</td>\n",
       "      <td>2400</td>\n",
       "      <td>2006</td>\n",
       "      <td>4</td>\n",
       "      <td>P9</td>\n",
       "      <td>69300</td>\n",
       "      <td>2016-10-27 00:00:00</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>2 rows × 21 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "       BOROUGH NEIGHBORHOOD                      BUILDING CLASS CATEGORY  \\\n",
       "84546        5      WOODROW  22 STORE BUILDINGS                            \n",
       "84547        5      WOODROW  35 INDOOR PUBLIC AND CULTURAL FACILITIES      \n",
       "\n",
       "      TAX CLASS AT PRESENT  BLOCK  LOT EASE-MENT BUILDING CLASS AT PRESENT  \\\n",
       "84546                    4   7100   28                                  K6   \n",
       "84547                    4   7105  679                                  P9   \n",
       "\n",
       "                     ADDRESS APARTMENT NUMBER  ...  RESIDENTIAL UNITS  \\\n",
       "84546  2730 ARTHUR KILL ROAD                   ...                  0   \n",
       "84547      155 CLAY PIT ROAD                   ...                  0   \n",
       "\n",
       "       COMMERCIAL UNITS  TOTAL UNITS  LAND SQUARE FEET GROSS SQUARE FEET  \\\n",
       "84546                 7            7            208033             64117   \n",
       "84547                 1            1             10796              2400   \n",
       "\n",
       "      YEAR BUILT  TAX CLASS AT TIME OF SALE  BUILDING CLASS AT TIME OF SALE  \\\n",
       "84546       2001                          4                              K6   \n",
       "84547       2006                          4                              P9   \n",
       "\n",
       "      SALE PRICE            SALE DATE  \n",
       "84546   11693337  2016-12-21 00:00:00  \n",
       "84547      69300  2016-10-27 00:00:00  \n",
       "\n",
       "[2 rows x 21 columns]"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.tail(n=2)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "46eafa61",
   "metadata": {},
   "source": [
    "```{note}\n",
    "`df.tail(2)` and `df.tail(n=2)` return the same thing. The latter is more explicit which can be easier for other people reading your code to understand.\n",
    "```"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bcb929f3",
   "metadata": {},
   "source": [
    "### Sampling $n$ rows\n",
    "\n",
    "If you need to randomly sample rows from your dataframe, you can use `df.sample()`. Unlike `df.head()` and `df.tail()`, `df.sample()` will return 1 row by default instead of 5. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "3e38ef7c",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>BOROUGH</th>\n",
       "      <th>NEIGHBORHOOD</th>\n",
       "      <th>BUILDING CLASS CATEGORY</th>\n",
       "      <th>TAX CLASS AT PRESENT</th>\n",
       "      <th>BLOCK</th>\n",
       "      <th>LOT</th>\n",
       "      <th>EASE-MENT</th>\n",
       "      <th>BUILDING CLASS AT PRESENT</th>\n",
       "      <th>ADDRESS</th>\n",
       "      <th>APARTMENT NUMBER</th>\n",
       "      <th>...</th>\n",
       "      <th>RESIDENTIAL UNITS</th>\n",
       "      <th>COMMERCIAL UNITS</th>\n",
       "      <th>TOTAL UNITS</th>\n",
       "      <th>LAND SQUARE FEET</th>\n",
       "      <th>GROSS SQUARE FEET</th>\n",
       "      <th>YEAR BUILT</th>\n",
       "      <th>TAX CLASS AT TIME OF SALE</th>\n",
       "      <th>BUILDING CLASS AT TIME OF SALE</th>\n",
       "      <th>SALE PRICE</th>\n",
       "      <th>SALE DATE</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>19932</th>\n",
       "      <td>2</td>\n",
       "      <td>CROTONA PARK</td>\n",
       "      <td>07 RENTALS - WALKUP APARTMENTS</td>\n",
       "      <td>2A</td>\n",
       "      <td>2952</td>\n",
       "      <td>28</td>\n",
       "      <td></td>\n",
       "      <td>C3</td>\n",
       "      <td>1790 PROSPECT AVENUE</td>\n",
       "      <td></td>\n",
       "      <td>...</td>\n",
       "      <td>4</td>\n",
       "      <td>0</td>\n",
       "      <td>4</td>\n",
       "      <td>1760</td>\n",
       "      <td>4620</td>\n",
       "      <td>1908</td>\n",
       "      <td>2</td>\n",
       "      <td>C3</td>\n",
       "      <td>422573</td>\n",
       "      <td>2016-09-27 00:00:00</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>1 rows × 21 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "       BOROUGH  NEIGHBORHOOD                      BUILDING CLASS CATEGORY  \\\n",
       "19932        2  CROTONA PARK  07 RENTALS - WALKUP APARTMENTS                \n",
       "\n",
       "      TAX CLASS AT PRESENT  BLOCK  LOT EASE-MENT BUILDING CLASS AT PRESENT  \\\n",
       "19932                   2A   2952   28                                  C3   \n",
       "\n",
       "                    ADDRESS APARTMENT NUMBER  ...  RESIDENTIAL UNITS  \\\n",
       "19932  1790 PROSPECT AVENUE                   ...                  4   \n",
       "\n",
       "       COMMERCIAL UNITS  TOTAL UNITS  LAND SQUARE FEET GROSS SQUARE FEET  \\\n",
       "19932                 0            4              1760              4620   \n",
       "\n",
       "      YEAR BUILT  TAX CLASS AT TIME OF SALE  BUILDING CLASS AT TIME OF SALE  \\\n",
       "19932       1908                          2                              C3   \n",
       "\n",
       "      SALE PRICE            SALE DATE  \n",
       "19932     422573  2016-09-27 00:00:00  \n",
       "\n",
       "[1 rows x 21 columns]"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.sample()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8f788f2b",
   "metadata": {},
   "source": [
    "## 4) Assessing missing values\n",
    "\n",
    "The fastest way to assess missing values of a given dataset is to use `df.info()`. It gives a good overview of the columns, datatypes, and \"non-null count\" (a crpytic way of describing how many values are not missing).\n",
    "\n",
    "Let's test it out on our dataset."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "186e45a6",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<class 'pandas.core.frame.DataFrame'>\n",
      "RangeIndex: 84548 entries, 0 to 84547\n",
      "Data columns (total 21 columns):\n",
      " #   Column                          Non-Null Count  Dtype \n",
      "---  ------                          --------------  ----- \n",
      " 0   BOROUGH                         84548 non-null  int64 \n",
      " 1   NEIGHBORHOOD                    84548 non-null  object\n",
      " 2   BUILDING CLASS CATEGORY         84548 non-null  object\n",
      " 3   TAX CLASS AT PRESENT            84548 non-null  object\n",
      " 4   BLOCK                           84548 non-null  int64 \n",
      " 5   LOT                             84548 non-null  int64 \n",
      " 6   EASE-MENT                       84548 non-null  object\n",
      " 7   BUILDING CLASS AT PRESENT       84548 non-null  object\n",
      " 8   ADDRESS                         84548 non-null  object\n",
      " 9   APARTMENT NUMBER                84548 non-null  object\n",
      " 10  ZIP CODE                        84548 non-null  int64 \n",
      " 11  RESIDENTIAL UNITS               84548 non-null  int64 \n",
      " 12  COMMERCIAL UNITS                84548 non-null  int64 \n",
      " 13  TOTAL UNITS                     84548 non-null  int64 \n",
      " 14  LAND SQUARE FEET                84548 non-null  object\n",
      " 15  GROSS SQUARE FEET               84548 non-null  object\n",
      " 16  YEAR BUILT                      84548 non-null  int64 \n",
      " 17  TAX CLASS AT TIME OF SALE       84548 non-null  int64 \n",
      " 18  BUILDING CLASS AT TIME OF SALE  84548 non-null  object\n",
      " 19  SALE PRICE                      84548 non-null  object\n",
      " 20  SALE DATE                       84548 non-null  object\n",
      "dtypes: int64(9), object(12)\n",
      "memory usage: 13.5+ MB\n"
     ]
    }
   ],
   "source": [
    "df.info()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "72b1e06c",
   "metadata": {},
   "source": [
    "At the very bottom of the output, we see:\n",
    "\n",
    "```\n",
    "dtypes: int64(9), object(12)\n",
    "```\n",
    "\n",
    "There are 9 columns that `int64`, which store integer (numerical) values. There are 12 columns that are \"objects\" which typically describes columns storing string values.\n",
    "\n",
    "There are 84,548 rows and across all 21 columns, there are 84,548 non-null values which indicates that we don't have any missing values in our dataset. 🎉"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2b74f4dd",
   "metadata": {},
   "source": [
    "### Using `.isnull()` and `.notnull()`\n",
    "\n",
    "You can use [`.isnul()`](https://pandas.pydata.org/docs/reference/api/pandas.isnull.html) to generate a boolean mask that returns `True` when the value is missing and `False` when it is not.\n",
    "\n",
    "```{note}\n",
    "To reverse the boolean mask, you can use [`df.notnull()`](https://pandas.pydata.org/docs/reference/api/pandas.notnull.html) which returns True when the value is not null (i.e., not missing).\n",
    "```\n",
    "\n",
    "Let's try it out on our dataframe:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "e64f278b",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>BOROUGH</th>\n",
       "      <th>NEIGHBORHOOD</th>\n",
       "      <th>BUILDING CLASS CATEGORY</th>\n",
       "      <th>TAX CLASS AT PRESENT</th>\n",
       "      <th>BLOCK</th>\n",
       "      <th>LOT</th>\n",
       "      <th>EASE-MENT</th>\n",
       "      <th>BUILDING CLASS AT PRESENT</th>\n",
       "      <th>ADDRESS</th>\n",
       "      <th>APARTMENT NUMBER</th>\n",
       "      <th>...</th>\n",
       "      <th>RESIDENTIAL UNITS</th>\n",
       "      <th>COMMERCIAL UNITS</th>\n",
       "      <th>TOTAL UNITS</th>\n",
       "      <th>LAND SQUARE FEET</th>\n",
       "      <th>GROSS SQUARE FEET</th>\n",
       "      <th>YEAR BUILT</th>\n",
       "      <th>TAX CLASS AT TIME OF SALE</th>\n",
       "      <th>BUILDING CLASS AT TIME OF SALE</th>\n",
       "      <th>SALE PRICE</th>\n",
       "      <th>SALE DATE</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>...</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>...</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>...</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>...</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>...</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>5 rows × 21 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "   BOROUGH  NEIGHBORHOOD  BUILDING CLASS CATEGORY  TAX CLASS AT PRESENT  \\\n",
       "0    False         False                    False                 False   \n",
       "1    False         False                    False                 False   \n",
       "2    False         False                    False                 False   \n",
       "3    False         False                    False                 False   \n",
       "4    False         False                    False                 False   \n",
       "\n",
       "   BLOCK    LOT  EASE-MENT  BUILDING CLASS AT PRESENT  ADDRESS  \\\n",
       "0  False  False      False                      False    False   \n",
       "1  False  False      False                      False    False   \n",
       "2  False  False      False                      False    False   \n",
       "3  False  False      False                      False    False   \n",
       "4  False  False      False                      False    False   \n",
       "\n",
       "   APARTMENT NUMBER  ...  RESIDENTIAL UNITS  COMMERCIAL UNITS  TOTAL UNITS  \\\n",
       "0             False  ...              False             False        False   \n",
       "1             False  ...              False             False        False   \n",
       "2             False  ...              False             False        False   \n",
       "3             False  ...              False             False        False   \n",
       "4             False  ...              False             False        False   \n",
       "\n",
       "   LAND SQUARE FEET  GROSS SQUARE FEET  YEAR BUILT  TAX CLASS AT TIME OF SALE  \\\n",
       "0             False              False       False                      False   \n",
       "1             False              False       False                      False   \n",
       "2             False              False       False                      False   \n",
       "3             False              False       False                      False   \n",
       "4             False              False       False                      False   \n",
       "\n",
       "   BUILDING CLASS AT TIME OF SALE  SALE PRICE  SALE DATE  \n",
       "0                           False       False      False  \n",
       "1                           False       False      False  \n",
       "2                           False       False      False  \n",
       "3                           False       False      False  \n",
       "4                           False       False      False  \n",
       "\n",
       "[5 rows x 21 columns]"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.isnull().head()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "033b6c61",
   "metadata": {},
   "source": [
    "We can count the number of missing values in each column like this:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "f40bc9f6",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "BOROUGH                           0\n",
       "NEIGHBORHOOD                      0\n",
       "BUILDING CLASS CATEGORY           0\n",
       "TAX CLASS AT PRESENT              0\n",
       "BLOCK                             0\n",
       "LOT                               0\n",
       "EASE-MENT                         0\n",
       "BUILDING CLASS AT PRESENT         0\n",
       "ADDRESS                           0\n",
       "APARTMENT NUMBER                  0\n",
       "ZIP CODE                          0\n",
       "RESIDENTIAL UNITS                 0\n",
       "COMMERCIAL UNITS                  0\n",
       "TOTAL UNITS                       0\n",
       "LAND SQUARE FEET                  0\n",
       "GROSS SQUARE FEET                 0\n",
       "YEAR BUILT                        0\n",
       "TAX CLASS AT TIME OF SALE         0\n",
       "BUILDING CLASS AT TIME OF SALE    0\n",
       "SALE PRICE                        0\n",
       "SALE DATE                         0\n",
       "dtype: int64"
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.isnull().sum()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "105e3404",
   "metadata": {},
   "source": [
    "As expected, there are 0 missing values in our dataset. 👍"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "080c250b",
   "metadata": {},
   "source": [
    "### Using the missingno package\n",
    "\n",
    "Another way to visualize missing values in your dataset is to use the [missingno](https://github.com/ResidentMario/missingno) package. It's a great way to assess which rows have missing values and how sparse or dense your dataset is. Let's import it and give it the alias \"msno\"."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "c226c92f",
   "metadata": {},
   "outputs": [],
   "source": [
    "import missingno as msno"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "20c328d1",
   "metadata": {},
   "source": [
    "Let's use the matrix() function to visualize patterns of missing values in our dataset:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "7ba5c0c2",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<AxesSubplot:>"
      ]
     },
     "execution_count": 19,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABdkAAAMNCAYAAABkrn2QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAD1TUlEQVR4nOydZZQV19KGn8Id4u7u7nqjN+5uRG/c3d3d3fPF3QkhxA2CxkNCEuJKEhIgMPX9qGqm53BmmIHhdPecetbqFaZlsvf0Od213137LVFVgiAIgiAIgiAIgiAIgiAIgiBoOq2ybkAQBEEQBEEQBEEQBEEQBEEQFJUQ2YMgCIIgCIIgCIIgCIIgCIJgMgmRPQiCIAiCIAiCIAiCIAiCIAgmkxDZgyAIgiAIgiAIgiAIgiAIgmAyCZE9CIIgCIIgCIIgCIIgCIIgCCaTENmDIAiCIAiCIAiCIAiCIAiCYDIJkT0IgiAIgiAIgiAIgiAIgmAqIyJtRaRb1u0Imp8Q2YMgCIIgCIIgCIIgCIIgCKYiItIdeBtYM+u2BM1PiOxBEARBEARBEARBEARBEARTCc9e7w+MBd7NuDnBVCBE9iAIgiAIgiAIgiAIgiAIgqmAC+wDgS+BrVT1BxFplTouWbUtaD5CZA+CIAiCIAiCIAiCIAiCIGhmRKQrMAD4DNhdVb8TkVaqWiMi7URkQVXVjJsZNAMS9zEIgiAIgiAIgiAIgiAIgqD5EJGOmLj+N7Cuqn4lIm1V9V8RaQcMx6xjtlHVcRk2NWgGIpM9CIIgCIIgCIIgCIIgCIKgeWkFtAG6AmuJSAcX2DsC7wHDgENCYG8ZRCZ7EARBEARBEARBEARBEARBMyEirVV1vIh0B94GegAHAc8DbwJ/Adup6ojsWhk0JyGyB0EQBEEQBEEQBEEQBEEQNCMi0kZVx7nQ/i7QDRgNfAdspqo/l5zfGdgQGKiqn1e8wcEUEXYxQRAEQRAEQRAEQRAEQRAEzYgL7G1UdSSwAvAjMCdwH/AbgIiI/7cLcA1wHSbEBwUjMtmDIAiCIAiCIAiCIAiCIAimEBERLRFbUxnt3YB3sIz244B7U/svAnYG1lbV/hVveDDFRCZ7EARBEARBEARBEARBEATBZCAinUXkTBFZQFU1yU5PSGW0/wGsBPwJXAjsJCLTAOcBuwFrhsBeXCKTPQiCIAiCIAiCIAiCIAiCYDIQkSOAS4DbgbNU9YtJZLR3xzLauwCfA8sCa6jqexVuetCMhMgeBEEQBEEQBEEQBEEQBEEwmYjIBcB+wBPA6Q0I7a1UtcYtYj4AZgWWUtUhlW910Jy0yboBQRAEQRAEQRAEQRAEQRAERUNEWqvqeFU9TkRaAfv6/rJCuwvsM6vq9yKyIDCTqn6RVfuD5iNE9iAIgiAIgiAIgiAIgiAIgkaSZKSr6viU0H6M27GXCu2tVLXG980PXCwiXwBHhcDecgiRPQiCIAiCIAiCIAiCIAiCYBKISAegAzAy2edCextVHVdGaD9TVYf5v+cDzgc2BVZIhPegZRAiexAEQRAEQRAEQRAEQRAEQQOISEfgW2A0cIeIPKmqrwN4QdP2qjqmRGivEZEzgFHAxcD6wHKqOiibXgRTiyh8GgRBEARBEARBEARBEARB0AAiMjfwEdAO+AnoDNwBPKOqT5c5/2JgH6AXMA2wCrC6qg6sUJODChIiexAEQRAEQRAEQRAEQRAEQT2Ipaa3B64F1gIeA1oBB/h/ewFXAe+p6k+p6y4EjsbsZdaODPaWS6usGxAEQRAEQRAEQRAEQRAEQZBX1BiNieuzA9+q6hFYdvotwMLAE8AzIrKZiMzr1x0LnAasFgJ7yyYy2YMgCIIgCIIgCIIgCIIgCMogIqIpAVVEHgHWwIqXDheRVlgx1C+AaQEB+gGvqerRWbQ5qDyRyR4EQRAEQRAEQRAEQRAEQeCISGsRmRUsi73k8OPAdMAefrwGuAloA+wAHAh0AfYWkTkq1uggUyKTPQiCIAiCIAiCIAiCIAiCABCRTsC5wDzALar6RJlz3sH095VE5B5gQ2BHoI+q1ojIbMBoVf2lkm0PsqNN1g0IgiAIgiAIgiAIgiAIgiDIGhHpCvQFxgF9gJdLjrdW1fFYAdRbRWQ40A3LYO/jWe2o6jcVbHaQA0JkD4IgCIIgCIIgCIIgCIKgqvEM9peA34AjgQ9UdVwirLs3+3g//WXgS2AmYFtSAntQnYQnexAEQRAEQVB4RKS9iEyXdTuCIAiCIAiCwnIkoMChqjpYVccBpIT1aZITVfUL4Dys4GmH1DlBlRIiexAEQRAEQVBoRKQb8Dqwo4hI1u0JgiAIgiAICsmywLeq+kF6p4js6b7rL4vIzSKytIi0xuLP4cDhkewRhMgeBEEQBEEQFBYX2AcCfwMPqapm26IgCIIgCIKgaIhIW8xWe0YRaeX75hOR3sDNwGZAa2B34BZgLlV9HxPaFwAik73KCZE9CIIgCIIgKCQi0gUYAHwG7KCqP2TcpCAIgiAIgqCAqOq/wFvAwsALInI38CaW3X4tMDewErAVsAhwoF96PLCKqv5e4SYHOSMKnwZBEARBEASFwwX2V4DuwDGq+p3vl8hmD4IgCIIgCBpLEj+q6rkiMg2wCbAc0Au4DnhHVUf5uW8BvwAzAqjqNxk1O8gZIbIHQRAEQRAEhcItYgYBPYDOwDYi8r2q/hACexAEQRAEQTAp0okZqqoi0lpVx6vqMSJyHtBFVb8qc/4cwB/Ae6W/J6huwi4mCIIgCIIgKAwi0h3oD3yOLdW9AjgZOFhEZs6ybUEQBEEQBEG+EZE2YMJ6er+qjk+82FX1V+BrP79dcr5nuR8OtAceLfd7guolMtmDIAiCIAiCQuCDoteAX4FdVfV74BgfEJ3k51zj+4MgCIIgCIJgAr4a8jMR2V1Vnys9rqo1qX8nWe5j/dr/YEVPtwDWVtUvK9PqoCiEyB4EQRAEQRDkHhFpDdQAxwHvpYV0VT1KRJQQ2oMgCIIgCBqFrw48WFXPybotlcAF9n7AJ8DgJlzXA7gFK3w6DlhDVYdOhSYGBSdE9iAIgipGRDoC7aMSehAEeUZEOgAvA5ep6n2p/WkvzaNFBEJoD4IgCIIgaBAR6YoJzT+LyJWq+mfWbZqauMA+EPgCWw35XWOvVdXfReR94EXg8Sh0GtRHiOxBEARVioi0xWwXXgSOzbg5QRAEDTEHljl0s4iMUdWyHphlhParVfWHSjc2CIIgCIIgr6QKyH8M7FEFAntnTGAfChygqt+JSCtVrfGVknOo6vB6rm2lqjWqemry78q1PCgaUfg0CIKgeukIdPL/BkEQ5BZV/RTYH+gD3CsiWzdw7tHApdjk4bEiMmNlWhkEQRAEQZBvPIN9EFZAvmciOPuxFqcRep+uwKxeHlDVb0SkjQvs7YE3gK1dbJ+IEo/2ENiDBmlxX6AgCIJg0rjFwh/AC8CaItK+vsAiCIIgS7zYKao6BDgZ6AX8XyOE9luBnoDWd14QBEEQBEG1ICJdsIzuz4GdVfVbEWntgnM74HUR2SrTRjYzLow/A7wOXCQim6rqOLci7Ae0Be5T1fFZtjNoGYTIHgRBUGX4MrdEdPoMmBfoGIFFEAR5QUQ6iMiaAKo6LtmvqoOBU7EJwkkJ7QcAi6jqT1O7vUEQBEEQBAXgAGAe4HlgJICqjveM7vf8nLczaluzk2Tmq+ojwLnAcOAmEdkCeBP4C9hCVb/NrJFBiyJE9iAIgiohyVQvWeb2ClADLO/nSAZNC4IgmICIdMKyjfqKyPMicqGILC8i0wOo6kDgKOAlTGjfpr7fpao/VqLNQRAEQRAEBeBebKXfmcBeMGHFYH/gD2C7liQ4l1i9PAucgwnt9wOdgTVV9etsWhe0RKLwaRAEQRXgxV4eEZG/sMyFocCnwA9YMcGlgd6lRQSDIAgyYDNgKSy7aFlgBuBo4EMR6QU8i00QngAcjgnt26vq49k0NwiCIAiCIP+o6ggROQnTAi/1TO//USuwf5M+3zPcO6jqyMq3dvLwNi+BxZDjMFH9A1X9XlWf8sSzo4GFgPWAZ5NEsxgLB1OKxGcoCIKg5SMiywNnAz2A+YFpMYH9C2Au4DWssvzorNoYBEF147Ui1P99EFbo9HfgQmAssBOwCdAF+BZ4EfgJE+VnB/ZS1ccq3vAgCIIgCIIC4UXhLwR2B0YA66jqZyXndAGuB0YD+6ft+/KKF3V9BCtyOicmsncE3gFuU9Ub/LzNsWSNebD48RnfLyG0B1NCiOxBEARVhojMjgnriwPrYrP4CwKHAner6j8ZNi8IgirEB0XHAXeo6qe+7wjgYExQ30NVPxeRHsCawKbASsCiwCigG/A1sKiqjqp8D4IgCIIgCPJHfcKxiMwKnATsCxwC3JmMAz0uuxDYE1hDVd+tYJMnC58U6IdNGlwB9AZmA1YALsHsYa5Q1VP9/E2x/s8D9FTV57Jod9CyCJE9CIKghSIiHYGemIA+GHhXVYeWOW8G4AJgF+Aw4PbIaA+CoFL4QO5jzMZqW+CvxENTRA7BlvR+CRypqv1S180ALIBlsi8KnOZ+7UEQBEEQBFWLW6bMmUpcqE9onwkbB+6EjwMBAS4HdgNWU9UBFWr2ZOO2N9cDC2PZ+V+pao2ItPbCrstgfVoGOFFVr/brNsYy2lcGNlbVFzLpQNBiCJE9CIKgBeKi1SvAzEBXoBPwKnCKqr7i57RW1fH+75mB87EA6xDgrshoD4JgaiMi3YBBWI2InkmxLRFplRLaDwWOwDLVD02E9NTASYBWyfMsCIIgCIKgWnHP8Tcwq5T9VXWI72+M0H4MsCSwMwUR2AFEpB3W5+ewpIvxqWOiqioiSwOPA78C26rqMD++JXAgcLCqflLptgcti1ZZNyAIgiBoXlxgH4x5GW+NZbLvBawB7JOclw4+VPV7zKrhbiwLYMfKtTgIgmrEn1WDsNoQe6jqt56JBKAi0gFAVa8ELgXmAK70QVJyjqgRAnsQBEEQBFWPx0RXYEXkzxGRJX2/JgU+S87/gdpx4OXArsCqRRHYnbmwLPWBqQQMoLbfnqRxGPZ3WSJ1/DFgqxDYg+agTdYNCIIgCJoP96J7E/gG2ExV//JDt4vIbMCxIjK9qv6cmtVvrarjVfUHETkZGAO8lVEXgiCoAkqeVZsDo5LsdV/i/BZwiog868+nq3y8dCRwqYgcm7aOCYIgCIIgCAxV/T8R+Qe4F0BETlbVwSnBuTSj/UdMaP8F82afyGI05/wLjAXm859bAemEMhWRNsDbwG9YbbLHktgz6vkEzUVksgdBELQsjsS8iT8A2sMETz6A4cDnQA8RmQdIskTTAch3wCGq+mEF2xwEQfVR51nl2eiJwP4O0BoY4NlIrQBU9SrgYmA54EwRaV8uIysIgiAIgqDaKI2JVPVRzPZlA+Dskoz2VqnrFgLOBGqA4woosKOqwzEBfXcR6ZSOH1PnjPOxbg3Q0ffVVLyxQYsmMtmDIAhaEKp6pgvoWwN/i8j5bgUDsCy2PO4TLLh4U0R6A/cDP6jqb/47wnYhCIKpSsmzarSIHKmq44D3gD8wr8xv/NyaVKbRNSJSA7ygqmOy60EQBEEQBEH2pGIkTf8MoKqPiMjOwP/5sSSjPal7My9wDhaP3aGqv2bTi8knlZn/MJaMcZ2I7K+q/4hIG48vk0mIlYGRwGvZtThoyUTh0yAIghaCiLRT1bH+7zuBTbHlfoeLyLHA2Vjg8QMwPbAtMC/QFugLbJAEIUEQBM2NZxS1TYvj/qzaGLgPWBf4GdhFVb8qubYDMH8Rs6uCIAiCIAimBm6/9wDwDPCwZ2pPENpT9qBbY0L7C8AJqjpUROYGLgPWA1ZX1UHZ9KJ5EJHOwJ3Ahtjf5EBVHZ06Pi1W4HUVbNz7bSYNDVo0IbIHQRC0UETkbizI+AzLYt8GeC41mz8dMBOwG3CXqn6QVVuDIGjZiEgn4HRgEawQ88+pjKs7sSJb3wEbq+qgdBaWDyAvBmYBdlXVPzPoQhAEQRAEQa4QkXOAE/zHfli9m7OAP1R1bGIh40L7VphHey/gOmAfbKy4uhcFzTWlEwf1HOsO3IElcLwPXI2t4l4MWBvr79pFn1AI8kuI7EEQBAVFRDoC2wHLY5npP2FV4T9LrF9E5A5MRH8W2MMLnrYGFIu34iUQBMFURUS6YgO6GuAL4GBV/T0puuzn3IIvVQbOToozA50xgX1vYEVVHZBJJ4IgCIIgCHKGiOwCXA58hPmML4WtWn4I+D9Vfafk/K2B24EuwO/AOgUR2LsBLwE7q+rH9ZzT2r3YuwAHYau2l/PDXwFDMc/59yvR5qA6CZE9CIKggLho9SJevBSrqD43FjDdAtyiqv393Dsw65i7MfHqp3SWaBAEwdTCl+6+hU0CngT0U9V/RaSt/7fU5moT7Fl1lgvtNwG7AKuFwB4EQRAEQVCLJ0+9CYwFtsJE9gOBzQABbgZ6q+pDqWu2By4BNi1CRrcL7P2BH4GtVPXHBs5NhPbEJmdpoB2W5PG3qo6qSKODqiVE9iAIgoLhtgtvYqLV8cBAVR0nIotjy/4OxTLXT1PVfn5NIrTfCZzXUHASBEHQHHgm+kXAisBeqvpZmXPqTPiJyF3YEt97ge6YzVUI7EEQBEEQBClSgvLWWOb6oap6tR9bB7NGOQb4G3gZuBIYoqrfikgXVf0rq7Y3FhfYB2Ii+a6q+l3aLqacdUwQZEmrrBsQBEEQNJnDgXGY5UK/xGNdVYeq6uGY8L4RsL+IzODH9gAeAw4DjvQChEEQBFMNH/QsA3wIDEueO2LsIiLXAW+KyLEisoxfsxvwOLVZWKuGwB4EQRAEQTAhgQGAxHIPeA8YBuwiIrP6sT7AAph1zAPA4lgS1v0i0g7IfUa3r9weiAnsu7nA3soz1FuLyJwhsAd5o03WDQiCIAiazKrAl6r6UXpnMpOvqhe6uH44ZrvQF0BV9xaRMcBtYRUTBMHUxq1i5ge+9gFRKxGZEbgVWB9b2vwHcD6whogcp6ofqOpeIvIHcFP4ZgZBEARBUO2ISAdge+BvEXkunYWuqsNF5GKsmOkSwLci8gCwFrAl8Dam/R0KPJbY9OUZrz02GPgG2NHtTpPM/fbA60BvETkpNdkQBJkTdjFBEAQFQkR6AK8CfVX1EBFpr6pjUscT/7l5sWWBr6nqTmnf4yAIgqlFSlgf7M+i87GlyndhWVObYzYwDwFnAL8C/wMuBLZPe4YGQRAEQRBUO57R/SgwJ9AbOEpV/yk5Zz4sU/1rYAywCrAD5sdeuOQqEdkQuB9bDbm5qv7k+9tj/ux/A1uq6rfZtTIIJibsAoIgCIrFSKwS/HIAqjqmZNmg+n8/x6rMz+g/h8AeBMFUxQeB32CZUq199x3ATZiF1V5YVtLOwGGq+qWq/gncAIwGVqp4o4MgCIIgCHKKiHTBCsi3wuKro1X1n1LrT1UdBjwF/AdYEKvF9VIRBXbnDWBfYB7gURFp533uj62C3DoE9iCPhMgeBEFQPF4ElheR3cCE9bTQnqIG+KfM/txSTz+CIMg5XphqEPAOcGqqVsSHwAnYxOCaqrqJqj7l4nrCMsDPwLsVbnYQBEEQBEEuEZE22ErAH4F9VfU5Vf0boB7x/BIs8/sH4E1V/bdijW0GRKSDiKwtIh09Tnwaqye2EPAS8D6WbLaDqo4oubaLiCxR6TYHQSkhsgdBEOQUEWkvIluJyAUisqFbwyi2dG4UcLhXjk+E9napa+cDemDWMoUQr12kO1VEZs+6LUEQNJ6UwP4FsIeqfpPOsFLV31R1hKq+6+e3TV07LbA38CeWtRQEQRAEQRDAHMB8wK2qOkxEklWCiMjiIrKHiOzrNqFgK57fwnzZV6t8cycftxv8FPOVX9/HvX8DTwIHA9NihVwPVtWvS67t4te97jFpEGRGiOxBEAQ5xG0XngBOBXYE2gOd3HP9Q2AXrEr8BSKyA9RawojILMDxwMxYNfkJNjJ5xfv7EbAGtgQwCIIC4N/dt4HPscJU34lIK1Wt8aW9t3om1gSSzCoRWRG4GNgC2Lk0KykIgiAIgqCKmRXL4h4F4EU/O4vIrdjK5tswy73BIrKBF0O9FOiC2fQViVWA2bD+ngls4DXF/sYy2s8AfgKuFJEZk4tcYL8Eq/mzjqrGODLIlCh8GgRBkDNctOoPjMCChr6qOqrMeVsCd2MTpq8AfYHZseBkKWADVR1YkUZPAaks2E+BPVX1m4ybFARBI/Bs9d7A2sBGqvp86lg7oB/mzb6Wqv6cOjY9cA6wMqDAbqo6pIJND4IgCIIgyDUisiAWSz0L3Ad0Ak7CPNdfAM4FFgMOwpKrlscKn14G3KCqH2TQ7MlCRGYAbsEmFJbG+noQ0EtVx3qm+6bAlcAnwDZY5v5VwK7Aaqo6IIOmB0EdQmQPgiDIEV4x/SlMmNoT+MqtYNqmsj9XBz5S1Z9FZGmsmOC6QDfgF+A14CpV/TiLPjQFD5jewtq9g6r+kHGTgiBoAiKyMTbZ1x84SVXfcfF9CDb42a504swHjf8DvgfuK132GwRBEARBEIDX4Lojtas/cDMWP430cw4BLgfWVdW+ItJBVUdXvLFTiIicA2zn2w3ALJhVzPMutHcCNsOE9o+BL4GtgdVDYA/yQojsQRAEOcIFq3OBE1T1Wd/XKiluIyLHYEvobgTOVNVfPGO0FTA9toxufFJ0MM94BvvbWOb945hdRKEKtQZBNeP2VSoiGwAPYzUgzgJuwmyfdlTVr0quaaOq49xXVIrwrAqCIAiCIMgKEVkJswn9F3gQGOO2fElMtT9wCraqcHCWbZ0ckmQyF9HfBR7DxrpPYxnth1Kb0d4J2MSPdwOWK8LK7aB6CE/2IAiCfLEG0B0vWAq11eNF5GzMYuF9YHvgBBGZRlXHqupoLyw4pgiilQvsA7BJgROBDYDbPHAKgqAAuMAuqtoL2BZ7fr0OjMUy2L9KF112K6yzvI5ETRGeVUEQBEEQBJUgXTQ+tU9U9W1VvUVV7/SEJAFwgX06YEPgQ8wqJveISBcR+Z+IrAq1tXqAcVih07WAHzF7mDFY5vqGKY/254C9gQVCYA/yRojsQRAEOSAVVM0E/OaFa9LHl8ECje2AFbFiN3sAp7nFTGFwi5hkid9WwLXAMVjBmttEpGOGzQuCoB5EpIOIbCUie4rIWlBbVNn92LcAfgP+wZ5lE457YaqLgOOAoXkvxhwEQRAEQTC1EZGuInK2Z6XXlB4vjZd8hfN4//cCwPnAf4DDVPW3ijR6CvBx6wfAdcD1IvKgiCwmItOq6lhsNeQywP6qOhwr4PoPcAWwvoi0V9U/gUdV9fNsehEE9RMiexAEQYaISBv3zUuCqm+BeURkxZJTP8EE6adVtUZVd8XsGGZU1TEVbHJzsC5WwGc3Vf3Fq8D/H3A05rN3ewjtQZAvPAv9RWxQdAvwkoickUzyeaZVH2AnYEngQhFZzo91AC4FdsOW9b6fRR+CIAiCIAjygq/sHYIV+mzU2MdtYrqIyMXAJdi4aq0CxVYzY6uywbLvFwQeBe4QkfVVdRhwHrC5iMznQvsm2Lj3HmBtmHjyIQjyQojsQRAEGeGB1ROYxULC45i/3K7uWZyIV6NU9YvEy1hEFsKE91eScyrc/CYjIp1F5ABVfUJV9wK+S46p6u9Y4BRCexDkDBfYBwPjgf2wjPU7Mf/PvaBORnsvYBtgJeACL9R8BbArUZgqCIIgCIIgbZ05DNjXs7MbyyrAzpilygaqOmgqNHFq8RXmsf40sCZwLDZZ8BvwrIjcDSyPifHzArjQvg0myg+rfJODoPFE4dMgCIIM8MBqIPA9sLmq/pwqIngRcBRwAnBhmWWC0wAXYrYxm6pqUfz3zgROxvp0vO9rk/ZlFpHuwC7AxZgnX88ohhoE2eECe39sULSLqv7g++fBrJ46AutjHuvjS4qh3gf0AEYC64TAHgRBEARBteMWeoOBT4G9VXWE28BMZBfTwO+YFRipqqOmVjubC7cK3ROzePnGk8Pmw6xhFsSsYZ702HF7THyfH7hWVQ9O/jal48YgyCORyR4EQVBhUgL7MGCbtMDup9yCVY4/D7hIRJZMXbsiZruwA2a3UgiB3bkLuB34n08kJAV7WicnqOpI6ma03xzFUIMgG3wQdDY20LkJK1ScrK75AqutIEAbTEwvzWjfDfgcWDsE9iAIgiAIqh230HsHaAfs6QJ7WxeR24vIeSIy+6R+j6p+WwSB3TkcK166v4jMosZnwD7AR9gK5q08djwY2ACr4XMjmEWO/zcE9iD3tMm6AUEQBNWEZ4UOAj7DAqvvUrPzbTGP9Y9E5Awsy/1IYBcR+RDo4FtbzHZhcEbdaDLex09F5CygNbCviKCqx3j2a+ukiI+qjhSRe4AaLFN2DG5JEQRB5fCM9NuwAlSXAL+IyKupOhCdgCWwAlajReRhoJ+qPuYDxqdF5CVV/TubHgRBEARBEOSKrthYbhywrYhco6r/elJRf+BfbMVy4fE+LaGq54jI3MBJQCsRuVpVv1PVYSLyP7zej4go8Izbw1yUWcODYAoIu5ggCIIKkQqeBFjJxeS2Hli1A74AHlDVI/z8Npjn3m7A7MCfwHPAC6o6IpNONAERaQW0VdUx6SWQIjIvcBrm63yTqh7j+ycI7f5zD8x/73VV/ajiHQiCAACvAXEn9hzaQ1V7i8jJwBlYHYk/sOW+y2IDx1+wAdNZwPgoThUEQRAEQbWTSqyaDXgE8x0/B7gDeBcb6+1QhHHepPCV259hY9uDfd+tQE9stfbVqvqd758fixuXxRKrnlHVf7NodxBMKSGyB0EQVAgRWRTLYh8CnK6qT/j+jsDbwF/Ajqr6le+XoopTnrGfZKHfC3yhqp+nji+AZTNsDdzQgNBe2L9BEBQRX8a8NbAQtoT3Hc80WhCzfJoJeBnzzNwFGwiN9km1hYC1gQ2Bk1T1/Qy6EARBEASFRETWBd6IekQtj1TNmuS/s2NC+0yYw8RXWK2tXzJtaDOQKuo6HNgd+D4Z3zUgtM8HXI+tkDwUeCTsYYIiEiJ7EATBVMYF58NU9WwRWQfzJf8ROE5VXxSRoVjmwraq+k09vyPJfMi96Ow+zi9hRWv+xTJbP8N86J8Ceqnq9yIyHeYvvwlwp6oe6dfXEdqDIKgM/qx6FstYnxGzp3oNOE1VXxKRhbHJs7WBc4FTUytUohhVEARBEEwmIvIuNj7YSVX/yLo9QfOQGsPNAfzh9aeSY3MC9wMrAmeq6hm+v7BjIS9yOhBbod1TVb/1/RPixEkI7fcC0wFLqepfFe9AEEwhIbIHQRBMRXwm/2NsCeBubhGzPnArFkhPB4zABPbvS67tBKwLvKqqv1e04VOIiCwF9MYmD57F7CQ2BebB7HJeAO4DfsMyHNYBblHVkzNpcBBUOS6wD8EKMp8CfA38B5sUfB7YEfseLwZcDSwA7AH0SYT2oFgUYdI2CIKgGhCRl4BZgO1UdUjW7QmaBxeczwdWApbGxj3vYUlGA1T1ZxffH8aSGy4DrvRM91ZFi688lnwNy0bfSFWfLzk+YfKgnNDuiVpzY1aDX1Wy7UHQXITIHgRBMJVwgX0gJlr1TGepu9B+GyayH6Sqt/r+JNuhC1aFfXVgzVIBPo+47c0MwDdezHRJ4A0smDwT6IsVUNwUWB9YGfgU6AEoFlyerKrnVrzxQVDF+PPmLWAksGE6c0hEjsMGQKuo6tu+bxFsonBOTGh/qagZV9WAT9geiU2MfA/8HzA07lkQBEH2iEgvYA5gG1X9IOv2BM2DC85vAz9jNbneAdYC1sMsYq4FrlLVEZ7R/hAutKvqFf47CiO0p8a9o7CirjMAm6vqeyXnlRPaz8bsQ8uu6A6CItEq6wYEQRC0RDxz4U3gWyyD/Rvf3wpAVV/AMrh/Bg4QkS18f42IdAcuxjJHdyqIwN4NE28OANQDqMHAGpiwfjk2WfCuqp6GeTYvjE00vAV0wYolPp5B84Og2jkcWBT4AOgIICLt/diXwD/YChQAVPVDrDDVMOBJ7Hse5BB/Nr8N7I2tGDoUuAfYOMt2BUEQBCAiT2Ci67UhsLccPIZ6AvgGE5GPVtV7gUOwBKo+wDHAYSIyo2dtbw38ABwiIseDjQszaH6T8VjjQyx56r9YP38AnhSR5dLneiJWa//3XsAtwMnAnsn+ICgyIbIHQRA0Mx5ovAssgtkvjEmOpYMlVe2DCVUzAyeLyBa+TO58TIBfTVX7V7Ltk0OquM272HK/Gg+g2qjqAEyAmwu4TEQ2AVDVP1X1E1U9X1W3wDyeF49CiUFQeVT1bCwzfWvgFBGZRVWT59Za2ATYRyXXfAgcBLyCDSKDnOFZdIOAn4AtMc/X/wLTAkdk17IgCIJARPoCy2HFxM9LEm6CFsHKWFb6xcBwHxe1UtV/VfV7H/s8gcVRqwCo6ggsDqsBdhKRaTJqe5PwBLJzsESNvVX1G1V9DYszvgeemITQvi+W1f9IrLALWgJhFxMEQdCMpJbKfY150h2H2b6cU1otPlVdfj0so/t74C/Mt281F6hzjfd3EPA5sKv76U20tNE92l/FiuAcr6rP+v62qvpvpdsdBIFRphDVlsA9qnqIiBwLnAWsq6qv1fPdbqeqYyve8KBB3AJoADZB8t90XQ8R2QW4GZvYHJbaHx7tQRAEFUBE3gK6AdtgiY/nYVaKO6vqo1m2LZhyRORo4FRg9tIitoldiohMi42NflHVNVPHZwE6qOoXFW30FCAiiwLflsQaAqyGrWaeBdhCVfuVXDchBg2ClkJksgdBEDQTLmoM8217bFb/ZOAw4CQPpibgAruoam/M13gxYAVg5YII7F0xf8HPsEHBBIFdRNqJyBl+XitVHYRltM8DnC8iGwKEwB4E2aKq40qW7T6GZVC9hQns27rALuWWLYfAnls2AubDJnxnhlq7Msym7FtgFhFZ2z3bCYE9CIJg6iMihwLtgB1V9UNfxXkS0Bv4PxHZKtMGBpONC8sAHbDEqX/FSc5JZWv/jsVcy4vIXH59a1X9rigCe8oG9YNSgd1jitcxS8LvgMdFZPn09SGwBy2RENmDIAiaj42A54E9VfUHVf0buJpaof3kBoT2PlgGyzLuZZ5rXJR7BVgQOFVVf4AJnvLtsGKn24hID9/XOiW0zw7c5Bn8QRBUkJTQOoEy/piPYtYifTA/76BgqOqD2FLtbbBJ3sVTkyRrYxOer2D3uJ+I3CMiK3s2WhDkjrRIFbQcRGShrNtQSURkZ6wI5sbpeF9VhwAnEEJ7oUlNVg/GJrg3VSd9XmplYG9MkO/m1xfCLiUlrpf1jE/6W4/Qvly5a4KgpRAiexAEQfPxPLCve+oBoKp/YXYx9QrtqXNfV9VPK9LSKcSDwFux6vH7JoMkEWmDCewjSVkUJCKeC+0b+K/5vOIND4Iqxu2dLhORBUuPlfHHvBWzrjrFi3JpOYE+yA8i0k1EjvRVVajqFcDRwC7AcSIyvYicABwFnA7sBhyIFSdbD3gDuE9EuoSgGWSNiHQQkb1EZD+IlRYtERF5HbhGRDpk3ZZKICJvA6cAH6nq96n9AqCqQ4ETCaG9JfApZgN6iIgsmexM3etEnF4O+Aqz0ywEDcWS5SgR2r8GXheRZaZeC4MgW9pk3YAgCIIi4wODZYH+ac+9tHexqo4SkSv90Nl+/GxV/dWPF3LgqKpXici/WLGasd7HB4A/sCWwI0qvEZEOqtpfRBZIFVYMgmAq4/ZO72MDuR/LnZOaDBuvqvu4qL4LUCMi56VFgSBf+P39EBgO3Ji8g1T1Uh/TXwwsA8wLbAc8kbx7RORGYFasKOprPjkc5Aj/LnYCRhU1ZmgK/nl+BJgBGCAid/vqwKCFIFb0czpgG1UdnXFzpjre367AdqU1mlKrWlVVh/hkKJjQvpOqPlbh5gZTiKp+KCLnAVcAR4vIhT6JAkx4pk+DrRrsjxU7zT2NiSXLXJPUIHsdW61xKmalEwQtkhDZgyAIJhMX2N8B5sJm5c8Ahqnqz4nAnhI6SoX28SJygar+nE3rm46ItAc2xQb5zwGo6vWelXENsCe2PHLrUjHOg7KDMFuCF4HwcQ6CCuHfv8HAR8Aead/MUkqE9r1EZDxwCDBGRI6vb2lwkB1SW4D6faBnIpKLFxRzof1fbLD/JvBxSmBPCteOwIqhBjnDPfPPwkT2G7Di6i0WX4nxNpYFejLwoqr+kzyXsm1d0ByISC9gRqwQ4sdZt2dqIyIvY4Uft1LV96VMEfH05JmqDnWhfRzwiIhsp6oPV7bVQWNJ+Y/X+dmTkWbE/PZnFZErVfUJP20ZYH9sFdnqRZhEbEosmSZtHeOTTW+p6j9Tq51BkDUhsgdBEEw+cwMLAO2BpTHx4mXPCnxcVf92P/JE6EiE9vHA+Vj29ylFEK180Hs/lu34noi8lGSiq+p1IjIauAXLouxc5tqLgX2BhashCy8I8oKIdAZew7wwd1bVnyZ1TYnQvq+IjAFuKcKzqtrwQe8gzH6rp6p+mxJwJgiSPthvBVyGebSfq1ZwLyY8c4zf3xcBxVYqfJZti6Yubjl3O/ANZr83PDkWAnvLQEQewYTFAxOBvZzo3FIQkaex2HkDVf0i3VcReQK4SlVfKL3OhfbTsTHGqEq2OZg0PrbZWlXvLB3XlEyYnCIiv2I2QY+JyGfYPf0DaAv8R1U/qGDTJ4vJiSXL4X+bENiDFk2I7EEQBJOJqn4kIqcCF2BZCp2B44B7sMz2J4FLNVU53YX264B/geeKMKjwQPJdLKvsfOBJVR1TYolzm2e6Xwv8JSLnqOpnnoF3KbAzsJyqfpJRN4Kg6vAM53exycB3aEItHhfakwnCg6dWG4PJx5/N/YAvge1V9ZdkcsSfxwNF5HBVfR7Mo92F9kuw1VQXp5evB/kiJWr8jHnrD1XVf1t4RvdMwELYqouvUp9nAVYAlgCmxazpvknHV0H+EZFXgEUxm4ndRORLVX3WE1KkVKwsOiJyNLARFgf/ArVe3CLyGLAGtlqjLKo6SES2V9W/WuLfp6h4bDUYeEVEHpxUVraqXuaf/SWB5TFrmFeAN7WMtWbemJJYMgiqEYlndRAEQdNJ+cutDDwOvKKq24nIElixwGOB+YABmK/oo6r6Yen1WbS9KYhIO+BRbFJ2f1VtsDCPiBwIXA3cgWVMHgDsAaymqgOmcnODIHB8UDQAKzJ1D3Amlu28rap+l2XbguZBRE7CbEROAa5W1ZG+vz02EB4HbK6q35RkTx6GPZ9vBA6NbPb84aLy2cBawD6kLH5S57QFxrtAWehM4JSYvhK2KnDLxFZBRDpilnSbYB7tYIUCj8Tik8LWtqkmRKQ3MAcmLC+P2VN9BZypqs/4OYWIjZuCZ6uvD5yBJd6MFZGnsAmjzVR1cD3XteTJtMKSiq2+BHaZVDxV9M90xJJB0HRCZA+CIJgMSgSLuzCv8mUTEVpEemBByWx+yW9Y5tXdqvp25Vs8eYjIYsCD+DJHbCxb4wLAQr61BZ4F/vaJhwMxAecvoDW2FDIE9iCoEL6C5BPMWmIb7Lu4GTYBNgwrNBdFTAuOi483Yvf4RFW93PcPBf7EBsHfpM5Pv7cOBl5S1fcr3vCgUYjI88BPqrpryf6dgXWAObHv+Smq+ltRhXYR6Q68BOyFfW6fwYrq3Yz50B8PLAi8gK3CmBU4FOgCrKipovNBPhGR24CtgVWTZ46IbIo9v1qc0C4iqwPvJBOYbhmzLrba9b/AIpg/+4CS61oBM6jqDxVuctAIXHAeiD2fdlXV7yb3uVuEz3nEkkEwecRSjyAIgkYgIu1EZBUROQhsuaeItPbDF2FC86mpS64GOgL/wbzIX8QsUxpViT1HzA8sDHzo/sw17pl6BSasP4pNHjyBZfCjqtcCR2HvmLVCYA+CirM6VkNhZ1X9Ra1+wtNYAdP5gIdFZOYsGxhMGT5A/wfLcn4cOEdEjnSBfSSwXVpgd9qKyOwAqnp1COz5Q0Q6ichi/p6dC7OWQ0RaichsLtbdBmyP2W4ciFkWdC+owJ7YEIzH7F+GYcLrktgz7HbMj/pAYCdV7a2qd2IxyILAmlm0O2g8IrIxtqpx2ZTALqr6FLAfNll0qp+XFEeUzBo8hYhIf8wepp1/j1HVTYA+WALKiphAWyqwtwGOAS4UkWkq2+pgUrh910BgKLB7WmAXkfYicrmILNXY35d3gd2JWDIIJoPIZA+CIJgEYoXH7qPWK3RLoE8SIHkW1n3A4liGyqlYUaddVPW51O/pVoSMq8SH2f+9MpbB/ig2sJ8VW/K6BPA6lmk2N3AQ8K4PJJLf0z2xLwiCoLKISMfEJzRlb9UBy0K6ishCKhw+sdsdK4L5l6omAmx7TIzcAcsK3aRUQBfzb78SGAscrqqjK9j0oBG44Nwfq3typFjRw5Oxdy/AhsA0mOhxBlY472DMMujIZCVDUfDYagj2LNod+DYVV20AzIglMNwHjEnb4ojIAcBpwNqq+lE2PQgmhYj0xTz010jHg+ks3paU0e79nQHYUVWH+L62qWf1Q1hG/3HAjSmLr7bAEVjdo51U9f4Mmh/Ug797bwV2w+KmR5P76raaQ4DfgY1U9dcMm9rsRCwZBE0nRPYgCIIG8EFgf8yL7nJMXB9V5rw1gd5YgTKAnkDvomWWSW0xn/1UtZfvuwUbFHQE2gHvA7cAdyRL1LHCr2dghcneK9rAKAiKji/rXQv4VFU/S+2vs5Q5BkfFxEXy64DFMBHnNuAWVf3Sj3fAVlDtjq0kuktVf/djXYELsaz3lVW1f8U7EDRIyobgSyzL9Ru/52cAh2EZ7b2x4uKvJHGIT7D8Blyuqidm0fbJwfv2KjZptGBqYr+sD3V6v4jMgH0XpsUskVqUqNVSEJGXsMSMrVT1gzLH6xPaT08nqBQFEXkZmAWrJ/BBfTYiIvIMZh1zCnCDqo4UkROAczBx/oEiTjC0dERkNyyDe2Ysk72vW7b1w57BO2qZIqZFu5cRSwbBlNMm6wYEQRDkFc9OuB8YgXmFfuUz+KWBhmCD42cwn9RDEoG6SPgg/z1skD8k6aeq7i0ib2KDpVFYxuRIVR3nwWONZ+F8g/+NsupDEFQj/qwaiNk7DRCRO4EHVfVb/34m2UeiqqNF5Em/9CrgfhHZSVW/zaj5wSTwZ/M72CTuC9gy7ROB0SJyHpY0M9rtzDpjgrr452AU5mO9K+ZfHfZdOcMF5/7Ap9gkyY8AqvoXcJSIXAu0UtVPS65rhRWQ/BH40PflXtDxz3M/7Hn1K7ATcJcfLidKtkoJ7PNjheXXBVYPgT2feEb3LLjAXu5zmXonqao+JSL7YQVuL/JJlaczaPpkISLPYeLrJqr6aRIb+7GbgTNU9WsAVd1YzPbpLD/eCVsBu1MisGfTi6CU9OSeqt4lIqOw1UV3iMhewMXYiqKdSgX2JNM978/jNBFLBkHzEJ7sQRAE9bMCMDu2xH6CeFyameIDhD8wj/IuviX+ioXAB72DMIF9R7WK8RMCQ1W9WVXPVNVLVPUXzD81GSTNAiyNFXoNC4IgqDBqxdUSsWkcJqr2FZFLRSSxXAAQP3808CRm87QKcKvU1pgIcoRnoQ/CJnt3UtXjVHVbTGzfERPYawDU/FJ7YhZfFwB7Y9mhuwKrhcCeP/z+voxNnFyuqj/4e7V1Irap6rBEYPcJ7YTu2D0ejRUOzb3Pbypjfxi2Qm4AcIWI7A7l/bhd3OkhZp9zNWbHt7ZGTYFc4hnsPbBVBnUEdhE5T0TWS85N3281j/bDMGvG3yrf8slDRC4BNsDqMw2D2u+hiDwObItNfk4YF6hZKz6H2cOcCuygqven/ha5/h5XA/5sfk1Edkn2qeoj2IqDX7DEqg7AmskESuraLsDlInJWBZs8xUQsGQTNQ4jsQRAE9bMqlr39WmMCXlW9AXgNONQzGMZN7QY2Bx5IDgA+x5apJ8V8VETaiMhKJee3Tg0g5sCWs68OHK+qf1a6/UFQzaQGNBdgWctvYwWXf8MGPkOBy0RkhfQEoQ+OngW2Aw7VMhYNQbaIFVobCvyE1fj42pdoA7yBTYoeLCKHJM/plND+ECb6bAesGgJ7/nDBeSi1PvsHi8jyAPV9H7XW23klrLjiNphAN5FNQd5wa4X+2Od2T1V9DDgdW0F3eUNCO7AJJlZ+AWygqoMq1e6g8bjtyVrApao6xGPhJF58FtgZu4cTKBHaHwMWU9U3KtvyKeJWbBXK4ZjYDoCIPIUloKypXjfAV4AmQvsWwBPA9qr6YAjs+cFXCV0FrARcLyI7JcdU9WHgXGyysLufk6xqTgT2S4A9gYcr2vApIGLJIGg+wpM9CIKgHjwDYXfML3RMueWuUluEazlsoHgm5tm3iGeD5xoXbAYDfwPrquovqT61xywK3gYO9gyH5LouwL5YALYMsJmqDqx4B4IgAEBE5sMyq34B1gC6YoO/3THfzHZYVnNfz8YKco6IrA68gnlxH62qg31/R+ADoDWWbdYFmB7zib07dc65wG3JdUF+ECuY3g9bJbeuiGyH2dM9D5yqqu/6eXXiDreWuB9bZVcD9FQvsJhnXIDqDhyJ+VB/kzq2Oia2L4sV5b0zuaak73MBP6nq35Vse9B4RGQz4GhsJejGqtrX9z+F1ZPYqlysmBaYy8XaecQ/t+/6+GAh7P37D3AAVth0CWCL0v56X7tpSSFYCIE9L7htykmYVehwYGVg7+TZ5Ods4+fMgE2Cv+ITpxcDu2B2VoWb3I5YMgimnBDZgyAISkh5zu0B3ATsrKoPTeKaz7BCXDcC06oXo8s7IrICVkCvByaUD/D97TEB4B9sUPRNyXUnY9mSbwJnqeonFWx2EARlEJH/YYURt1bVx1P7B2GiXGcsY3YIVlzumUwaGjQaEdkcE1X7AAdjtjEDgD+xyc/+IrI2JqgvB6wQonq+cUGtDyY6b5a8X0Vke+A+zEbitHJCu4j0wLIKxwP3lNoU5BGfGLgOK9T7Smr/hPo2DQntpCyRgnwiIqup6uv+77WA87B7uTrmob8ysHkZwblscdC8IyL9gZFYn/7yfQsDTwPzAN8Dm6rqeyXXtcWe4wJc61nAQQ4RkQWwlTd3Y4WnD8RW4NydOicttO+NrWQ4kILbs0UsGQRTRtjFBEEQlJDKJHkZ8zrdTURmr+98X7b9M1aJ/c+iCOzOe1jWzY/Ak2JFxcACy7+wAOub0otU9WxsmfpBIbAHQW54EfgMONkzZRGRe4E5gQ0xweN8rPD9p/X9kiA7RKSjiGyc/KyqT2CFIdfFigIOwQqtbYUtV8ezRa/D/FIXqmyLg6bgGZLtcUEmJbC3UtUHgB2A/wJn+CR4qZ3G76p6DnBREQR2Z1VgN+BMSflxA+l+vUY91jGk6sME+UNE+gBHehYvqvoycAI2GfgO9uxaqYzA3gY4RUSurGyLpwyxoq4dgcMSgR3ALWE2xp7R44BpUxYcSX+PwKxEhofAnj/cJiaxxfwUKyK+PLbC6GHgNhHZNTnfrWPOAb7FJkcPoqAZ7CVELBkEU0CI7EEQBGXwAe9wbMnnJsAJIjJrmfN6AP/DAo13K9nG5sC9817HvCR/xgrcfI558G1f6vMqIl1FZCO/dpBawdcgCHKAqn6GFaFaElhMRO4H1seEuwGq2g84C1jZB5BBjhDzYH8DuEZEdkv2u0/xjtjS7fmwLOfvVXV8SsQZCXztW5BDPIv1TayY+q+q+rPvF1xwVtUHqV9onzBuK5Lvrar2xvx6FwZOS4T2VHZ+OaH9IhHZN31ekD/EipzOCZyiqn+k7uXLWEHP5zC7ifn8/ETEbINZB51GgWJn7+8sWFHXIUl/E1T1Y2B7LPP5KmDd1Pf2GEyY3FFVHym9NsgOEekgIh1SqyqS/74LTIdNmhyBxVe3lhHar8Rs3ZYrXb1QRCKWDIIpI+xigiAIGkBEpgeOwoLjRzF/22c8aF4F8yXfGstcyP0SfRdkpgVQ1Z9S+1thmQmnYT7rG6vqcyXXdsECyZ7AzKr6Y4WaHQTBJJDaWgrTYyLVdJilyE7Ay0Vckl9tuLB+B/Ar8DHmXZ32gN0UeBAbzJ+ktR7t02CCzgLAJol4G+QLn0Q5FZvUvhI4V1V/Sx1P+1InHu3PYR7t/Srf4snHLWLW85UYyb5tsdUYnwBnuPg+kR+1iKwGXI49w5YG/gyhPX94RvcsmKXgB2lbo9Q5/8EyfZcF1lfVV8VqAR2OWVztqKoPlLs2b4hIL2BRYG1V/azE7ugQ4Ea1wtNp65ixmDi7LHA2sJOq3l/6mQ+yw5/Ln2D2mDcBfRKrLj/+MDAvsCIwG1ZQfAtgrxLrmK6q+mcl2z41iFgyCKacyGQPgqBqaUwWiYsVl2JC+ybAQyLyAfAhcD2wFMUR2Ltg/ut9sIz165MMGw+aXsMGAe8BN4nIsiXXXoJZxKwQAnsQVI5GPquSgc8oTIRtC1yAFaeKQVEx+D+s4NgIYCbgaBHZJTmoqk8BO2MZZeeIyJIuZp6HFSTbOwT2/JES1EZh79gzsSzeE32CBD8+IbM7ldG+AXCFiCxT8YZPJh5XXAo8JlbbBgC12jYHAQvScEb761gB+bVV9Y8QIvOHZ3RPC2xXKrCLyP/ECoGiqi8BJ2Jx5Qti9SP2wAT2nRKBPYs+NAX//s2HZTSn42ZE5Gnscz19cr5bx2yCea8/g33ndwyBPV/4vTgUmyyaF7OGeU5EzvEJIrDPKpj//nBstc1jwA0isnfyu4ogsEcsGQSVIUT2IAgmQpys2zE1EZGO2CDvrEmdq6o/qeoVmKB+MubV3gs4Bcv4LoLA3g3zx1wGK2j6O7AfNuhJDxhexgb/PwOPi8gyvsT9UsxTdW1V7V/5HgRBddKUZxWAqv6DZYGOA+aNgXwxSL1z3waGY6unOgInlQjtj2IZZetjg/+7gN2B/6jq0Eq2OZg0niV5lVhhz0SIuQpbNdYYob0nsDj2Ti4EHks8gMVJF4tIz9Sxxgrtb6nqVxVuetAIxDzU1wIOVdXBItIudf9ewJJS/kzdy76Y0P42luRxHcXL6B6K1S/6G3hKROYCEJEngSWAHbSkfpEL7VsBH5DK2Pdjee9vVeD34VmsyOdYbGzUE0souk5E7gPaYZagm/o172Mrkl4FzvPxVe6JWDIIKkfYxQRB0CDp5ZAtBRHpii3j7IAVkNvCM8wauqawfwfv7yDgC2BfVf1cRNpjGXUHAtuo6nOpJYKJdcwVWKbSIGAdYA0tfjGfICgMU/KsEpHrsIm0FWNiLP+k7tsswEeYxcBLmFA5FrMWuSd1/uZYNh3AMqo6qMJNDhqBiKwLvIBns6rqO76/G5ZBeQY2id2QdUxhbAhKLDRWw/q3NHC0qt6eOq9e65gQc/KLfy5PBvYEfsS8yUf4saeAxYCtk1ixJMN9Q8wm5mpVfboognPSBzEf+XWwSbIa4AdgLmDLhp6/ItJJVf8uSn+rAbEC1N20ti7Gotik516YyH4fVhfjXOAXYH4s2311VX3Dr1kA+Lt0ciWPRCwZBJUlRPYgCIAJAccK2NLk2bFMuqdamqjqWWXvAt9jmQjvqOpYsUrykywkVjKAzP1g0O/rK8DcwKweMLVWK5g3I/AlcKCq3lZyXSusyN7VwEJYcDWwoo0PgiqmGZ5VewKXAUtGRmj+ELN52Re7r2+WHDsBK563Fuazfj8wGjivRGhfH/hKrdhekFNEZGvgIeB5rGhto4V2F/eKEGsINq6sEZE2qjrO96+O2SssTf1C+wfARar6TKXbHTQeEVleVfv5vT4YOBr4DtgQuAXzrN6sVHBOv7NEZAZV/amognNKaD8LGzNtpaqPZ9uqoCn4PXwT+Ao4WFW/8/0LA8dhdkZHq+qlvn9v7Pm1EHCAqg7Lot2TS8SSQVB5QmQPgiDx274Vm6mfHZu1nxfzYTsJuD0JQoqMC8fXYsuU951UoFTk7PUEMV/MCzG/3gNV9XoPMMGWP76I2cf8ignujwNjVXWUWJHUlYGvI7AKgsrRXM8qEZlRo35C7vBl219hBcX+xoqtPaeqz/vxlYGHgRNU9U7/+S5gDCbE/l82LQ8ai3+HwXRELRHaT1fVt/28bpj/+JmYkHFOWmgvAh5Dng6MBO7GCpX+nDq+FmavtwxwjKremjq2FWYt0xtbVfd3BZseNBIxD/Y/gV1UNbGCOQSzhpkG+AtYCRiRFs493jwQy/i9ufItnzwamtgSs1BcF7gYGydtpqqfVLJ9weTh45oabILoDOBe4OSU0L4gJrTviRWcPjt1bQ9V/b3ijZ4CIpYMgmxoM+lTgiBoyfgA7w1s2eMlmDfdb1hG++6YpcgsInJeCxDaWwHLYoO5L5KdPljYDFgFmBErAPqIqo4sutCuqh+LyKnAP8C1nrlwDYCInIz1eVGgu1/yHfCmiPQFHlIrQBYEQWWZomdV8u8YFOWaf/y/LwIbAauKyPHA8ar6lojcAJwpIk/7zzsDd2Ae1+NU9YGM2h00gJg/9VhqxfXWwHhVfUREtgMe9PNOV9W3VfUPEbnKLz8F6CIixxdFzPH+9cNEHDDR9RMReQZ4Q1V7qerLIvIrZkF3gT+fbgarMeATEB+HwJ5PXGCfHbOY+DP1rrnS30kHYr7N/yafeV8t2QYTM8/FPK4LgYhMrw0UkFbVf0WkN2bpdRXm0b65mgd7kFNEpDvwOiagX4lNDF1hh+QkVf1OVT8RkQv9kjNFpEZVk8Knf1W+1VNMxJJBkAGRyR4EVYzUenV/jvmtfZleOiYiM2MedUdhmVdnFWHZcjl8Nn8O4DPgKFW90vd1A27ERI52wHgsKLnTzyuED2oaH9jMAMyiqu/5voWwTLntgJ2BmYCLgP9hhaj+AtbDPAiTv8USWgCvwSBoSVTTs6qa8ezfdzFx6k5gGLA3VkTvUz+2MXAO8KDbcKyMWXhtr6qfZ9LwoF58Wf5QrEjp21iW5OfpBAUR2R7z+30By5RMMtq7Asdj7+RFiyRqiMhu2ATQAMz6ZTywJZbl+x3mBXw7MA/md7wiZsdwd+VbGzQFEXkZmBnzWX+/1MKoJKP9R0yI/1ZEOmD+6+cAO6sXOc37+MEnh4Ziq4gatNLwCaa0R/u2qvrB1G9l0FQ8oawfVth0M1X9Qaw21d5Ycc+7gZPqyWg/XlUvLPd780zEkkGQHSGyB0GV4gHwEKwAygaq+ks9580IXIB51K2SDAiLiog8gPlHnoIJ0TtiQcgT2GDgL2zJ9obAOkXL5Hbh5mYsc2FebJXCSar6qvsNngFsCwh233uXDnxEZC5gVEOZPEEQTF1a+rOq2hDzYL8d2DsZxKYG/h2A41T1XhHZFBPX9/dLz8ae2+pCewdVHV3xDgSTREQOxQQbsIKeC2ICxytYAdu+qvqj1BZDfRazh0kK6XUF2tUXj+UJEWmrqv+mft4VE2nuwSbwvwdWw55by2MCez/MIqkzlj25vao+VOGmB41ERJ7EvKhXVdWvpa63+mrAQLcWTHu0/4jFmJtgE4I7JQI75NuD3VdwzgFsrI2sc+FC+3+wZ/tYLDmlwYKSQWXx5+oQ7Fm8Rzp5yIX2vbCM9lKhfSFs8mgf4EhVvbzCTW8WIpYMgsoTdjFBUL0sjWVeTItlqfxSLsvEB4R3YBnQOwBvF8VCxScS9gV+1dpicVcDXakdCL+M+c4/mxI+9sWyr5bElhYWAhds3sPafheWobAbcLuI7KSq74jI+cAoLJtsfqB3akk7qjpeVb/MpANBUKVU27OqSlkPE58WEJHVVXWUW4UsD7wDXOU61P2q+pSI3IKJlC+WZFSOqXjLg8bSGzgfExufAvpiq8O2wOKnf0WkF1Yk8hisXsrvItJeVV8qSgahWEH1/iLynKoeA6Cqd/squlsxj+5jVPVR4FERmQkT2jfEMn/nwQr5Ds2kA8EkEZEtMKG8F9AFLD70Y32BjsD6yXhARK72Sw8DBmPvrgkZ7H593gX2mbEs548bm3Xvtjh9MaF2TAjs+cITj14BWgMbJRODyf1V1TEiktSIuMKPJdYxH4vI5dizqlcGzW8yEUsGQT6ITPYgqFJ8MLQG5kvXGVviOaSB898GvlXVrSrUxCnCA6tHsWypX4FN1P0+RWQ6rEp8e1V9qcy1m2HZ4DuWO55HPFPjXeBroGeSqSEia2LF1t5S1c193xJYgLU9XgzV9+d+KW8QtDSq7VlVrXjG3A5Ylu8PWHboX36sKya0TwccC9zrg//E3zvIKWJFbNdQ1V7+8/yY0HgQcJCqXufnrIaJzOtiSQ7vYSvOwLJgD1LVfygAIjI7VvRxe8xK8MzUsd2x/jwJnKWq/UqubQ2sDwxV1REVa3TQZETkRCyT9yXgWFX9XESewur4bJuyI0x7OB+NrcI5UlWfKJDAPiP2Hh2cjoVF5L/Aa8mzuhG/K+LonOCJR/2xVb0jsSz16/xYnWSxSVjH1Fm1k1cilgyC/BCZ7EFQpajqOBF5BfNMvAJ4XKxwT32ZRV2xICX3eKDRD1uufCzwiqr+IyJtVHWcL8V+I3V+G1Ud5/+eFsva/wbzFs09Pmh9GVuavrfW9VF/D/gImDkRbFR1iIic5cevFZGOqnpZDAyCoLJU27OqWnHhZYyI3Id5n14AvCEiq3hG+58isiImtJ/v19yjqmNDtMkvYv62DwFLi8gRqvqAqn4mIpdimZPXiMg0aoXzegO9RWQabKn+1ph3+4rARUUR2AFUdYQLsL8Dp4sIidCuqne6rno7TCjwOsD/nYhVz2XS8KBRJLYwqnquf8aPAs4RkVmAuYCtVHVgcr5nsiei5SXAQ6o6vCAC+53AmsDcqvpVemJTrLhpa+y53Cjy3NdqwgX2Qdj451Bs0vM8f59eW/KZxd/PtwCKTSB2FZFDVPX7AgnsEUsGQU4IkT0Iqgx/mf4BjPdljonQfjnwRCK0l2RybAD8CzziP+d20O8Z+jdjGd37qeqEaupJQFFyfutUoLE49rfYAstM+6EijZ5C/D7ejN3D/UTkB1X9zI/95YOkEcCEoFKtgNVZ2OTJGSJyGzAyr/c1CFoa1fisqkak1k5BXDT/Pz90IfBmPUL7WUA7Ebm13GchyAd+Xy8BbgBO8Ht8v6p+ISIXYZZ8Z4vIOK0tnDdSVX/DLDUQkWlV9ddsetA00rGfZzVfhNV3mZTQfpqqDiyCWBVMiCmTWPFsv5cnYZ/n3RKBveTzkBYth/u+XMeTIjIzVgRyJCbCHpcS2J8EFgC2LMr3MzB85dDb2OdwL1X9TkR+wmqbnOsf2+vqEdpvxayQjsOebbknYskgyB8hsgdBFSAinbGZ7ZWwLJS/sIyqh1S1v4i8jC1vvgIT2rdQt47xJWa7YkHo25D7wHlaYAnMg+6rZBDgGTWrYMuzWwNvAe/6YKIHtoR/cSzgXkNVB2fS+slEVa8VkX+xwX5rzx77TEROw7xQlykNtlxoPxr4Q1V/r3yrg6CqqcpnVTUgVuS0J3BnMtHZgND+hoisqKpjUkL7Z1j26P0UZAVZNeL3s4+I7InVQTnBxeZEaL/ETz3fv94Xaa2tRlJE8res2t9YUoKrlgirw0QkmTxoSGjvJiKHxbOqOKQFSBfax2JC+44i8qGqflg6FtAC1GpKo6rfi8iRwMnAASIyXlVPFJHHgaUwf/ZB5a6VgtSmqlI6A/cCN6rq9wCq2k9ETgdOwzLaaUBovwa4tUDjooglgyBnhMgeBC0cMa/XN7BiaZ9ghaaWAY4ADhGRvVT1ARfaD8eyoR8X82f7BDgX2BhYqyAz3PMCiwCDtLZIU0cs+NgUq6wO8CVwgYjcACyMZSz0AW5S1eGVbnRzoKo3+aD2BuBPERkNHIh57H0odX0zk6I/H2bY5CCoZqr2WVUFnA8cDMwkIheq6qh6hPZWfu59IrItUONC+3zATKoaAnuOSYnOr4nIbjQstF8gIjWqeolfOz75HRk1v1H4hNENIvK4qj7UCKF9tHrWvgvtHTD7hcgGzin1CcYlQvuFYgVvj7JL5HRVfb/yrW0eUjHw5yJyNvZePVhEdsEy9jcAPi65pg2wI1bj6LOKNzqYJP55/VlEzkqeUanP8LsicgaNENopVoHxiCWDIGdE4dMgaMH44KYvMAo4QFU/SR3bHhPVVwJ2UdX7RKQt5k14BdABGIIVqFpD3VMz7/js/BvAP8DRWKGXg7EA5AWsb239v6OB1VT1VzH/vtHaAorMich+wPX+4+GqemWW7QmCYGLiWdVy8Xfv/dj79Sbg/DJCu/oqszOA3YG1VfUDSXmlBvnCRcbOanYv6f3J/VwdE9pHAueo6oN+fG48sQE4TFWvqmzLJx8RWQ2r+fIOcK6qPuX769gGihV8PRUTdbZT1RdTx7rHhFE+EZEXgKtV9fEGzkknaJyMCe3PYZ+HIZVpafMgInNg79Xv1YtC+v55gVOALYEnVHUP39/aM3/bYO/pc4ENVLV3xRsfTDbp55WIrIAJ7asDJ2g9xVCLQsSSQZA/WmXdgCAIpipbYsvmTkwEdh8koqoPYJ5zbwK3i8hKan6ZfbGB4DhssLR6UQR2ZyRwDTAN8CJwLfA38D9ge1V9VlWfwDK8F8JEEFT1jyIEGiLSWUQWaOgcVb0R2MN/XM4Hv8n1hfAYDIIqoEU/q6oNEenkGeio6mhge6wQ2X7A8SLSOZUxpy7ejAIuBabHMsvKeqgG2eMi2xvA1SIyQ/pYOqMd2A3oARwrIsl3dji2SvBi7LteGFT1dSwWnBM4RUQ29f2ajic8s/dqLDtySZhQGBasDlCQM0TkRWAxbNVqvSTPLf/32ZjN1fZYPZ/OU72hzYRn8PbCMtQfEJGtk2Oq+jlwNvAYsFWyOsMF9g7YxMK5wE4hsOeLRo6LJjyvVPVdbHL7NeBMMcugwtkdpYhYMghyRtjFBEHLZkVs9rp/ssOXqSfLJF/1pcx3AXuKyHuq+q+IvAocAAxT1a+yaXrTSTIAReQ6TNxYEBvw3Qf8W7Isey7gJ2BY5Vs6eYhZ/3wDPCQi+ybLAsuhqnf5csHr7VI5S1U/zfvS9CCoBlr6s6racAHqDmBTEVleVd9X83bdBngYE9oRkSSjPbn/rTD7tu+BzzPrQNAYWgOPY77Uv7tdxk/JwbTQLiJ7YMvwt6a2ls0XInJikSZRUrHicyKyL1Zc7xS3WXgqJVyJ2zG8IyI/A4tCrWgVcUf+EJG+wCzAump2gulMXym9Z1rXOuY8X/n6lk8U5h4ReQmYHcvAfxrYH1hIREaq6ove52EicpZfsr9/zo/FxMnzMIH9/pRYG5/rjGniuEhTz7R3xTzaLwMOFSt4OrJo9zRiySDIJyGyB0HLpgf2ki0teJkONB715aLrYoJ8cv5LlW9u4/HA6mbgRuBjVR2RiBY+sHvbt+T81kDiVTc98B/gI+Dnijd+MvBlfQOxPp3SUCCZoKo3+ljgSqCriBytqhFcBUEFqbZnVRVzG7AA8LSIbKqqQ8sI7a1caP/Tr5kWywj9HhMKgpzi9/JirHD8RZgWeVoZob2Nqr4sIpdhRSLPx4qLjy+SwA4TxYrPisg+lBHagURsXwzzs343y3YHDSMifYCZgG3KCOzzqOoX5a5zob21f5bP9PMnEuTzhvd3emzS6yNPJnoReApYA19d4n35PCW07y0i62AToSGw54zJHBeln2n9ROQw4CctQJHTiCWDoDiEyB4ELZBU0PsLMKeILK2qA9PBsAca7dSWir2KLR+bASuMUgSuBLYD/gv0E5HHsMBjLNSZ3U+yrJJAY37MJue/uC9dFo1vCmLLcfsBHwD/U9VGizEutHfA/Af/mUpNDIKgfqrmWVWNSK3P+nNYsbTLMaF9kxKh/QFgb2ARETkFWBrYCNgMq3vyU/n/Q5AXVPUfEUnqnVwEkBbaPcZKhPTOmLj+W5lfVRgaENpPFZGO6r7zmGh7BFbPp1dW7Q0axjPYFwPWV9WhiWjux/oA04jIKmqWVxNRKmTmXWwWkduBtYH1VHWIiLTyPj8rIs8A85VOFGhtMdSO1NYYeCQE9vwwheOi9DPtvanWyOYnYskgKAjhyR4ELYgyAeBdWHb6gcl+qfXIRGu92GbDBPkfK9faKeZVLPtvBDa4uwJ4HfPXmy4Z6HoQVSMiXTyj7FpsNn9NVR2aUdsbjWcuvAHMD9yWBJLJvW4MaoVP51PVb6dOK4MgaICqeFZVG6n3bU3qvy9hQuMfmNC+uB8bg2Ws/x+wFFZU/BJgbqzuyeBKtz+YPFT1H8yG7RhsdcIZIjJjItqISGsRmQWYAxggIu2b8r7OI4ko5f9+FtgL6A5cKSLXi8jlwO1YHaAt1Dzog5whItNhFjE1WAJOx5QQ9xT2PNqrPoG9oIwEvgUOEZFZ/Tnd2o+Nwyxk7hGRY8XrDQCorfo8FVg1BPZ80UzjoiLex4glg6AghMgeBC2AJDMDmNeD6ISPsFnufUTkDJi4sIuIzIRltbyBBZxF4RXMd24wsBOwK9AO80sdLCKni1WQT9gYy9YfBvxXVQdVuL1NxpdCDsayaQYCl4vIWpPzu4qwFDIIWigt/llVbXgW3YUisrOIzJrs9/drX+BwYBQTC+1HY/d2XWBVYDNVHVLZ1gdTSonQvi9wAbCsH14UOAdYBThXVccUVNCpQ4nQ/jxW4PUBLDtyXSxJYzVVHZhZI4MGUdVfsHs1AitSuzaAiDwBLAFspaoDMmtgM5L6rB6GWXmtCFwvInOo1abaEdgc87BeFStq+oSIvC0id/gK4E/SE6At4XtcdJpzXFRAIpYMgoIg8b4IgmIjIl2wZcsrYRlyfwBDgYuB3li18auALYDrgCtU9RO/diFs0L8llk33caXbPzmkMsYOBy4FNlDV3v63WA/YBdgGGI0NhO8H3sH+FqNV9e9sWt54PFNjKPAxlgG5FnAKloW0i6r2LV3iGgRBvqiGZ1W1ISLtMCF9Zd/1PiYw3gJ8kIiMIrI6lkE2LTbAjQyyFoZbse2GxVg/A/8Cf2JZ3lsURXCWWk/fxpxbJ+4QkfZYgkYrVf13arWxuamm+Cm9ykJVx4vI7JgfeXfs2TUzsJGqflByXRtMnB5exJWQ6c+127/siWUDv4J9Z0/HVmB8DywHLA/sDCwJbK2qYXuUI6p5XBSxZBAUixDZg6DAeMDxDhYkv4llo6+FvXAXwbLYTwG6ACdiAebvwCdYMZSuwHRY9srAyrZ+yhGRZbCBwiBgb1X9zvc/iGWRvYt53rYD7lHV3bJqa1NwS58HgG7Y0t0Rvn8rLGNhZmDXlhxQBkFLoqU+q6oRfz5fj2Xw/okVGpsFWAd7r/YFXgMexQqhHoct7d5MVT/MoMnBVEZElgC2wt7NA4FeRbBMEZH2vsICSXlzN+H6dMHM3MciPiGwDTC4Wia9XITrpKo/luyfHRPiVgGOBK5W93N2Ma8NcAJwMrBMqQCfd0onFnzfOdg4aGbgAlU9ocx1bYCZVXVEET7T1UKMi4yIJYOgGITIHgQFxQcLTwOK+YJ+6R5srbEg5ApsKdn1wLHY4H8p4ACswOkY4GXgsSIMButDRK4E/gcsq6rvi8hD2BLY7VT1JRFZBOgJ3FGkQYKvMvjZl/em92+JDXqqIqAMgpZCS31WVRNSW+S0NXAZsAE22O0JzItZMeyITXKPA34FvvL932DF9wqxYqxaaUpW9+Scnxd8RUZv4HdV3dz3NVloLwouNt8HLAR8ihUcrmnJsZOIXAqsjsWLTwGnqOovqefY7MDjwPTAYcAzbqXSDhPezwJ6quo9GXWhSYjIqcBbwNB05r2ItE1WWYjImdiY6R1gf1X9VmoLRtb5LkdsnS9iXGRELBkE+SdE9iAoKCKyCnAzJqA/6wFzaYB4Oya076qq92XT0qlDapAwP7b88yU/9F9M5HghlWFViEFwKtAvl4GTzhjbkioKKIOgyLTEZ1U1k7JcaI0t294J6AUc5gJWD6ADtnx7CUzMm8Yvn19VP8+g2UEDiEgnrDDc8+l3cNbtmpqIyDRY8d3NMHF1D9/f4oR2X/X5LvADcDn2zP0r00ZNZUTkRWA+bJXrdNhKm97AJv78SuLM2YEn/ZxD/JwDgAuBnVT1fpH8F/0UkWuwdo/AVuyeA7ypql/58dKM9p5AP+BAVf0m3r35JMZFtUQsGQTFIUT2ICgoInIIVmxrjjKz+okI0Blbut4KWN4DlEIs721s20SkI3A3tlR7GHAg0Kdog0TPsnofs/x5DnhArbhaclywZ3biL7kltQHlLqr6cp7vZxC0VKrtWRVMJLRfjA1wXwEOUtWfS85dCJgD+EJVh1W+tcGkEJHHgU2B3YH7W7rQnhKsZsCsBHsCT6rq7n68rNBeRAHes7IfBtoD+2PfwxZ5XxNEpDcwOyaSDxArFrk7cCVwiKpe4+eVCu3dsUzwHYCdiyKwA4jIhsBDwC/AcGBNbJXRg5j/+j+qOi51/rmY//qnwJ7q9iNBfqi2cVHEkkHQcmiVdQOCIGgaYr50YH5ro7BCW0mwAUDqRfs3thR0CWB+P6ap83IZeHgA8YCIrJLuV5nzxAOuM7G/xTuq+kJBA40NMCFmB2zy5E0R2dYzFlCjRkTa+s+PAWdjWTvPicjqeb2fQdBSqdJnVdUgIh1FZLXS/YnA7vfvaMyGYg3gahGZ1q9t4+d+rKq9Q2DPNXtixfQuBHby7Elt6DtdZFIJFz8B52LFHzcTkTv9eDKBNAERmRvY2/9bJBYGFsRqFA1PHxCRBTzOWruA/SqLiDyJWUfsoqoDAFT1D0xs/hTLWMf3q/93BDbJ9A82YbhdkQR25yPgPeA3TGjdHWiNxcnvABeJyJzJ51pVTwQewWw0Z8qkxcGkqJpxUcSSQdCyCJE9CApCKthNln8NwoLlbX1/nQGhLxVTbBl7G6BHRRs8ZSyABVfXAsvVF3Ck+vw5luWwvogsWblmNitvYJmQHwNPYJ75DwC9ROTQVFD5b2qQ8BjmC/wWtgw6CILKUo3PqqrAsz8/BDbybNg6lBHa78eyJ68VkWk9G7p16XVBvnBB/VdgVUy0uIBJCO0++VJYAd4/t+pxYkNCu/j58wJXA6dgtQZyTyohZX7sOf2KqtZ4v9uKyOV4dixmkXKLiKyXTWubBzGrqh+wWk2ru3CXjAd+wET2pUTkOBHZS0SmFZEOAKr6DbAhsKqqPlIUgT3Vzi+xbPylgOlVNcn03QybXDkMs4e5QET+49ccCaymqv0zaHowaappXBSxZBC0IEJkD4ICIOYXenNJRt2Xvh0gIitAXaE9JcavjM3qf1rBJk8RqjoYCza6ALdRT8CRLK1T1T+Bu7DiTWsWcfCrqt8DA7E+PIxViT8S+BGzI3hGRC4TkZmwZc/JdfcDm6lqYe5vELQUqvFZVQ24wP4e9o69RlXHljuvHqF9FeAuEZkmssvySyLC+mRIG1X9HVgR+IuJhfbWqesWAK7BfHALgYh0EZHTRGSL1OcVzwJt3YDQrmJ2RxcDawGbF8FWw7+/14nIgthE2d/AaSIyl4hsg/mzH4rFVwdgWaH/AQ5JROci4p/h44GbsHt2gIh09fu8C7Ax1s+zsJpO7wMPisiuIrKUqo5Q1bdSvy+3AruITA8TPqPJ9/M6YChwooh0VNVhqvo00B8rQj0Eu98visi9ItIuYuf8Uk3jooglg6BlEZ7sQVAARGR5bLnjy8BxqvqO7+8J3IoteTwvnY3hL9xpscFgR2zpaG4LPflyv0WwNg9S1d9EZGUsiBiNLefuXy7oF5E5scBkP+B6Vf2oci2fcqS2mM302AqF/qq6uR+bDlic2gI3I4CngQdVtU8mDQ6CKqaan1XVgJgP7EBMYN9JVX9sxDVpj/brgdWB9Tw7NMgRItJWVf9N/Zy8f5MCez2weKsLcBzm0T7Wz50XE+C3AZZQ1fcr34Om4ZMJL2Ii+bfAV5ioPLRUMJe6Hu1PYJnrF2JWIqur6sCKNXwycYF9KNbPTX33GcA+mH1IO0xcvhm4JYmLReREzGpiYVX9pNLtbk48bjwb6/M+QA02gXImlgk8Bsuc7Ymt4JgDy+h+M4PmNhkR+T9gFmB3Vf06tb81cD4mxG6vqg+LyAXAUcC+qnqbiKyJTTa8rKrPZtD8JpGIqlm3o9JUw7goYskgaLmEyB4EBcEDw0eAD4Bjgbc9g+NYLKh8CxPU7/VLlsdevttgg6PcDgZd1LgNCzbaAXtgmUbjgZWAO4GxWMDRLx1w+KD3Wsx3fkktKQJbJMQsCS7EinPtrKqP+P7bsay504B1gS2BP4D5PXMpCDLFhY21VfWJrNsyNYlnVctGRLpiy9OXwkTyPr5/kkJHShRoBczg9gxBjhArBj8Q+87eBbyZfod6ZutYEemOCe3dgGOwuGpmzDJlfUyQHFTZ1k8+InIEcAlmv9AWWAEYjNkq9FLV71LnzgicgBWF7AQIxRHYu2L9+gzYQ1W/9f0zYJMMS2EZzbcBf/rEWPK9PRPYC1iqaM/m5PmUfk65EHkusK+fdqqqnl3m2k7ALFqQmhEupO8FXIrZZRylql+ljs+EfcefwyZaTsBi6rtTk2XJhFpuBWyPqRZOkqqqlZY6Lqq2WNI/z8sXaRIkCKaEENmDoECIyLpYgbUPgRNU9XXfvzdwDjAjNqPfFiv+A5aJl9vBoA+K+mEZVjcAr5Zm//nMfhJw7JXK5J8PuAhYDxP43qtk26cGIrIEFmhdq6pHisgDwDrADqr6op+zKvB1OoMnCLLCv8OfYwPbzVR1dLYtmjrEs6pl44PAgZi1RDfsPu8DvN9YISYR7KZaI4MpQkR2BP7Pf/wRE+FOAT5I3qepVQlpof1CTKRdj4IIzlBHfJ0feAj4E9gFK265CybSDMGyQC8B/lHVv0VkZsxSZC1gG1UdkkkHmoCLVq9jGaCbqOrPvr/sd7JEkJ4Rs1hphcXMuV31mUZEDsHeQwNT+ybYAXkW8DGp7TpV/bv0vNS1uRWd03gG8HZYMdvngSMSod1X8Z6LrUL5CzgYuDe9eiXveKwxHLMs27hIbZ8atLRxUbXFkt7fL4AB2LO5rP1eELQkQmQPghxTEiwnmRfrYcVMn8GWgyYZ7YtjM+IrYkWPXsNmv7/NqPmTRMz78jls5n4vtcJFZQP9VMAxBpvZ/x1btr0hBRr0NkQqo+oarI/vAYsB2wMvhngT5A0XJgdRkjnY0ohnVcvGP8dDsAJre2JWCnfhQnsRRMZg0ojIosA9wD/YoH8ZYEFscuU24G7gj5T42gMTbhfBEhfWLer3V0RuwrLT11XVtzwbcnHMw3tl7PP/ElaD4FP/TnQswooMb+u72Pf2fWyyd3jJOWlRvY2qjvN/z4lNtGyLrVD4oJJtn1xE5DKsmOdY4EpMqHsydTyZYJkROB3LaD8WuFFVR2XQ5Cmi9F3rQvv2mEhZKrSviq1Ieg7YukiiXiqm+hTYs1R8rTZa2rio2mLJ1Of5E6y/Vf15DqqHENmDIGf4cuaDVPVC/7kV0MoF9vZYZlU7zI9wCHCMpgoVFQkR2QibkT8C6N1QBo1np6yECR/jsSy0pYE1ixBoJDTSdmBz4DFM4OkJ9E0GhEGQF/xZ9S6WcbUH8EvRBjyNpRqfVdWCv2NvB+YDtktZTKwD3EEI7S0KF2u2AzbCJgf3Af4HzI+JAb0wIeNvVR0tItMAT2JxWW5XBSaUZiinRKpZsUzCPqq6U+r4M9hEwy/AokBnLHP/pNJM5zziIs4AbFXCrZj/+l/AFqr6RQPXtcFE5xWxyZYtivJ89rHAeVjx1uHAbEAb4HEsu/stVf0jdf6M2N9lD8yX/aqCCu11ViVMQmi/CrOVWVZVP86ivU3FV2P0wyYAdwd+LsLKgimlmsZF1RRLpgT2z4FdVfW7Mt/hQqyeaQz+TqlpqeOgoGm0yroBQRBMxH7A+Z6lgqrWpAT2/thS9jWBzbEB0UUislJysQsGycs576wNdFPVFxrzkvXJhF2ADlhhuaLM5LcTkQ1FZO5G9vMJ4H6snx/4/S/C/QyqBF/++RawMDBQVX9yIad1xk2bWqxNFTyrqg0Rae8DopOBrUpWYryECR2zAjf7kvWggIiRjHku8v+eqKojVfUSzHpgE8yz+xgsW/JEEdlQVX8D1iiIwN4eeFNEeib7/LksWBbk08CWIrKan/8gsAomWq2M+RpfDNxZEIG9E1bkdASWiX4fZg/SFXhcROau57q2wOFYzaJRwPpFej6r6hgse/03oC9m+3MdNjZ4GugjIpuJyDx+/o/ASZhl0LnADBk0e7IQkbtF5HyY8FmeoF24jcoD2CTZhsB5LnSBrfbtCByQ2pdbPKZ6HZvw6uUxlbbUmKqKx0VrUwWxpNRa4gzDLLgmCOx+7x8VkQVbkMDeHUt8XCfrtgT5IET2IMgfD2ODwMNE5GqYIJi/h/lpbufB1yvYAGFRTJRfFSwI9f/m9sWVCox6AN/7vnaTOHcJEZlOzZduO2BeVR08tds6pXhmyr3YPT0tPUCo5/zk+IPYQPGwljTTHxQfz04ZjC1hfQI4SEROBFAvJJdl+5qTanpWVRsutL0hIq+o6leq+mNa0PBnbl9CaC8kItJRRJYGu5ep7LIfsKzXdUXkP358BLAr8BNmnzIAm3i5U8wypijMjonG14jIDslO7//fwC1Ae2B9F9jXAXbAMp9VVV9U1WO1IJYpmCD5ICbi/OKia29qhfYnygntft6d2D3fX1U/qVyTJ5/kHeNi1XDM4mgvoIeqHoqJ7ZcDNcAjwP+JyGEi0kVVf8VWbSylJVY6eUVE5sAKDu8vIidAg0L7YVitgcN9/7PYRGmvvGc8p2IqwYTJg0RkL2h5MRVU57iommJJb//l2Oqwy3ySL/nutsf0jFmwid/C49/ffsBIbNI3CEJkD4K8kLxUfanjlVgRqgPFlja/h72MdvTBIH5uX2ArrDjVyWJeb7knFRh9DSznmQxjy2UleCZHO+AqbBYfVX23CIMEn8l/F8saugQ4dFLLyFLHn8HEgNWwDIYgyBz/TA/Gln+uBZyI+UsenxLaa1rKoLBanlVVSgfsObu8iDwBEwSNCVmP9Qjti2fQ1qAJ+GTJg8BjSdZ2sl9V/8HEnS5Y8ThE5H4sE3ZHVb1QVbfyn1dS1d+LIuao6jDgAOyZfGdaaHdR6nXMd/5U7Bm1FWZZkGsRshQR6SQiVwAfqupRWKyU9HEsZvlTr9Du5/2oqh+q6p8Vbv5kIeYjr/4ZTuLEXpig3lNsVc4PqnoM5ktfgxXtvQx4X0QuUdWx6rZXRcgCVitieRj2eT6hvhjDhfbHsL/Hf130AthQVZ/Jc1+l1u7oc2AFbJLgJ+CklNDeYmKqah0XVVks2Qqz7hqKrbZPVk61wVbk/wFsm4jvRca/vwMxu7KtVPX79He1pXxvg6YTNz4IMiYlrk8YxKkVBrkcC0B2BuYCNlDVL0tfyJ7RvgbmRTi6Uu1uJvoB/2IC3XQeWJQLhlfHsll+q2jrpgCfrX8Ye/HuBdylqn+W9q9cf30QNRorVLWPiwJBkAdOAD4CdlfVUZ7xeBYtWGh3Wuyzqhpxke1P7B17BibMPAmgtgy9PqF9BuBhsQKaQQ7xdy+YNcY/wGUikggV412A/wDLft1fRF7HBPWdgJeT36O2nH94Jds+OYgtvV9DRP4nIj1U9SMsC/8pUkJ7KsZ8ARNgnwDemJTAlVN2BQ4BHhGRDsnkWNJHF13rFdqLMmmSICK3AHeLSLv0RKCq9sb8mncGpvNzz8bsJXbDJlE2Ab4D+qR/Z1H+Bqr6PnAOtTHGSb6/VGj/BfgZe0aP8X3j/L957ut1wDdYTDVGVd/ALKtanNAe4yKgOmLJGp/Q3ct/vl5E1sAmk/4AdkgnDIIJ8FIAW6c0PmE0AKvtsrvWtcRpK2aHU8T3a9AcqGpsseVmw5axzpF1OyrY305YRtG9WKGpDUqOz4UV4KoBrkjtb5V125vxb/AgMBY4DpjW97VLHZ8GW9b7CjB91u1tQr/WxMTIDbEJTUkdmxX4D7AY0CXrtsYW26Q2zNt0Jf93p+TznPrvYpho9QfmdZxcF8+q2HK3pZ/J2PLt4/3ePpk6p03JNQJsgGVnzZN1H2Ire1+7YZlye/vPPYFPsczJ1UvO3c5jqxFYZmSbSre3GfrbFcvu7I8JjGsArf3YopigNQYTNdLX9cK8cttn3YfJ7HdnbCLhe0x87eD7W5ec1xYTmb/AVoTOl3XbJ6OvHbEs7W8wQbad70/+u4nf47OxccS/wN7pz3PyHk7HoXndgO6Y7c2S/vlOPs9Ll4sxkn4BM2F+9DcU6buMraiZNt0X/+9qWN2bYcBepfeyiBsxLkr62uJiSWxccBTwLLYaYzrfvzw2qV2DrYKds8y1XYHrgf9l3Y8m9LeDP5M/BObyfW2Sewl86c+jwjyLYmvmz0jWDYgttmQDkmVEjxcxEJ6M/nbDButfexBVg1UO36PkvNmxpc01wJWp/a0r1dap1P8kcG6P+SaOAa4AZk+dswxwM+ZztnjWbW5i/w70PqUDp1ZY0akhfj//8gHBYlm3N7bY6tv8c/ssJmhsldpfKmjUJ7THsyq2zDdMrNoDWKLMsekwof1fJi20d8q6L7GVvb/dMMuFV4BZU/t7Ur/Q/iAmTs+W3N+s+9GE/nYFPsEylDfBfLlLzykrtFM7wXBU1v1oQn87ltzXJEnlByYttG/sz+bXSr/Ted6oFVy7YfYL32FiVDqubOv9qsFsJXcnNXniz6xCfK6xFbyvAuOBvzHbm+uSZy4mvicxxhmp66YDTsHqVq2TdT8a0c9GfQZpYUI7VT4uooXGkv4u6uff3cexYtqdU8dX8M/x58CK1J1c6eLf8Rpgmaz70oQ+z4zFFV8BmwMdfX8HTNt5jSpKGo2tzGck6wbEFlt6w2Y/xwC3A/Nn3Z6p2M9uWGbNi1gRIrCZ/U+xbJvpS15Cs1ErtF+Wdfub8e+QDCA6YZk64zzAehabcHkPy3pYKuu2TkbfNsAKkB2JLV/dwIOQGmAQcBpwh/98SfrvEVtseduAtT1AHoB5KSb7W5Wclxbaj8+63c3Y/xb7rKqGzQc+n/nzdrzfw3OBhajNJOsEHIsJ7c+kri2MKFetmw/Uh2EFTWfxfekYqiclQjsmPu7n3+VjS59led6wTLlnMYF9rtTzaaKMZeoK7Tv6vjn8ubVQ1n1pZH9bYfY3P+JZg76/sUJ7O4/BCjeuSN3Tblih03JC+7qYvcg9Wbd3Cvr5ApbxegqwLVaQtzcw2vfP6+ctlYqdX8Dscp7wmGM7Pye3sTQ2WfQMjVzxR12hvWfW7Z/Cvlf9uIgWFktiq4rex/SMpct9lv35nWS0fwis7O/fjsCN2ITa0ln3pZH97QaciU0szIH5sX/pz+Cu2GTRm6QmTmKrzi35ogdBbhCR/bBZzXuAM1X1s4yb1KyISEdqq1CvjXmXjfNju2MTDAur6ieJt5cfmwM4CBsMXqiqx2fQ/EbjvqezY4PfT9Q8MsudN6FCvIhsD6wEzIsNCJ8F+qgVP8o1ItIWWBz4VFX/EpE5sYHQalhfpsdEnluAa9WLbbnX5jbAgtoCisAELY+Ux+CqwH3Ar8DZqvpQ+njq/MWAk4AdgaNV9dIs2t1Yqu1ZlSbdp5aMiMyIZVnNjokVv2ICe3dsgHQP8Do20N8Hy2p/TVU39+tbq+r4DJreZESkE7bs/nktWEHLyUFEumDZ67MD62rdwo6SiqF6Ys+l34EjVfVV9zj+AZs83FStaGbuEZGVMHHidOBxLeP7WvK8WgTztd4AKzR4q/t7F6W/bYAtsYmxsdi9Gu7HOgFHY/HxAGBLVR1dpO9sKWXeqck7uBuW+fpfLGP0ULXiifNhNQjaAv/VEr/jvCMiV2Ei1U7A+6kxUUfseXwSNmZaUVVHishcmDXS/zCRbwDm7923XJ2rPCEiM2Gi+XhsdfKVvr9Vue+xH1sNsw5dDDhEVe+uVHunhGobF1VbLOnvzyuAZbEJoE99f9m4UkSWx2xwBFvVsCNWO2I1VR1QsYZPJu7B/iGWvb6RP4vmwGxhemDf6e+BLUo/tx6nrAkMUNXvKtrwIBuyVvlji63chhXxGQ9cQ0EybZrQt92wJY3vADP4vmQp5PLYrOhG/u95Sq6dGysyuGjW/ZhEHztjgdSHwHDvS73ZgEycdVSozEHv752YSHMytZlH82OFIu/AZr5nA9qWXHsjlmFXSG/U2Fr+BrROfaZXxQLMgTSc0b4Utrw918/vKnxWtcesIjbNui0V6m9rapfxzubv3YHAiZjv6T7YxNEvHnO8CTyJDZpqgKey7kMT+9sNE42vroZ3CrUWMSMxgeKUJK5KndMq9e+e1Ga0r+37dsISGzLvTxP6fSSWuTtdE65ZGMsM/sH/boXIEE3aiQnIm/r9fh+YO3VOfRnthXo+e5uvxOwHEmuJ0lUKSUb7t8BlSUyJFYOtAbbJug9N7O/0WPbuMen3a6r/7bAVJ6OwDPC2ZX7HhL9VET7XmBD7tscch6b2N5TRvjqWuV+I1RhU2biIKoslvc0dsJjpvCZcszzmzV7j77BCWMRQ60DQm5RtmR+bA3jD+7RX6b3EJl1ux4rYzpR1X2Kr0Gcm6wbEVr1bSTCVBJFJ0QjBfDJrPJgsRFDR2H4Dh2FC1ZvU9ZhMipwm20+YN9uO1BbWyLW/MbZcaiiWNXgiNsPdcTJ/VxGC5XR/jwK6NbbtHlw+B/wfPiiMLbasN/9MX4Yt155IfMKyMb7Csn4bEtrbTc12NlM/q+lZ1QUTKQZgmWOFGcBOZn+7YxYTK1ArwsyJCaxfAfumzl0My/J9CFuynX4Pz5Z1XxrZ325Ylv6LpYPAlrj5/f00GfRi4uR4TGydseTcUqH9AyyDcrms+9HEPiex8mmYkNMmvb9cn7FM0sQSaWEKvIwdE9o3Y9JC+1OT+yzPuH+zYkk4H/jzqD6hvTtmy/YNsLnvm9f/Jhtk3Y8m9nlFf86ukO5jSb87YWPBP7GsVyhT2DWvGybAnlGybw5s0nc4DQjtWHLV2v7vQowTqLJxEVUWS6bauhjwDz4OaOh7iE2WJe+hVbBYdMms+9DIfnbGJgZ6kyrGXHJOYh0zHNiC2sLU3bAaA38Ay2fdl9gq+LnJugGxVeeGZdMNxpa9JfvapY4lL6vjsUHTHbQAoT0VMLfCMpG+Bt70fUdh3oPHY/7sPYF7sQy7Gg+eO2fV9kb2rxMm4LwILEjtgCA9oTJN1u1sxv529M9pr5L+lgbJyX1vm9o3C3ATNplUqCy62FruhhWgToqo/YR5RT4EHAfMQ21W8PKYzcYg6hbUy/VgN9XOantWdcEyrF4Ctqd29VQh7tdk9DcRnN8Gpk/fW2rFjS+BI0qua4MJeVth1my5XolR0t8vMI/uxJO8Rd5b71tbTIh8K+mv77+Kxgnt+2OTKfNUor3N2O/kOZUULt2uEdcMIuX/XIQNEzXOxgT16UuOdcAy2odTXmg/GfM5fijrfkxm3xfCCtp+SMNC+7TACOCG1LVFLOC7qH+Wd6zneNLvhfy8QyrVtmbs47He9ltK9pcV2lPH58XqTHxclHiEKhsXUWWxZEnfF8R0i/3953KTvcn3dy7M0qstlmxYlAmUbv4srgFeSu2faOWBf58H+fd5c39GX4t5zhciYz+2ZvzsZN2A2KpzAxbwF1INdSumd/SgeULRCGBfaoX2+bJu+xT0uVX6BeQvmaMwof0bHxT8t/TB7Q/pHcn5JAO2+uBMbGngEqn96WyT/bDlg4UInhrR552wIicrl7m/nbGssWlKrmkDHIAJl99SkGIvsVXH5gHlYdiyxk+AyzGh8g/f9x5whD/DV8OEyldphNiTl63anlVYBtFT2GB97qzbU4H+JhYiL1BSBJPaAXBa3Disns9AIYQqbALlY8zLdaaSfrYHLqZEcC7y5u/a1pgAO3OZ440V2rtn3Zcm9Lk0LlwC85Z/htREUOlnFssSfgfPdi7C5s+rt6ldSdIfKxC4JbBA6rz/YhNpH1FXaO+MiZoLZt2XJvS5VIBcyPv2IZZ0Uyq0J/99CptYK8Szqky/BZjP44ur030rc+4M2KT/2f5z24bOz9OGZWdfhtUCub3kWH3vogWwgsUjKdCKG6poXER1xpIzpX7ugk1092cSK/4wC7v3KGP3lNeN2ljyFcyKbhTQK3W8voz2QX5dH39mhcBehVvmDYitejdgSeBBD6J38H11BPbUufths6WPUKDMI2yG+whs2VtfbEC0C7CIH2+NFWz6BFv2PKPvT4LHXFvDlOnvq5gP80TBL3AGtYOmG0kNloq6ARcCw8vsPxZ4GRsEf4Z5tPXw+30ZtlLj0ZYQdMXWMjZSWSUeOB8A/OsDiIUxD9HjgCewJdvjfUA0CBsEfowV+8m8L43sb9U8q/z+vY9lv6b99QXLItwam8jtmnVbm6GvXbGM7heozepM+tsGz+D3n+tbrl+Y9y4mYryUjqNSx9ph2d7v48u0i75R6wG7Vcn+UnG5UUJ73jdMlDrXn7u3AJtQu+rzYL/v15V7RnnMcSsmgMxSyXZPYZ87YnUSRmAi8+2Y3+1Yf9c8gGVEzo+tOBmELdOfK+u2T0GfZ8PGC+lJoLTQvgETT7TMgol7F/jPuRebvZ07AzuX7LsMizc29J8nvKNS56zkn4lkvNgj675Mop+dsGKunf3nmbEikb9Rv9D+BXAoNvHwACbQLZ11X5rY76oaF1ElsSSWgT4As7CdPbX/LO/fmdTawUjJs2xubKL0/NLnWF437N37JRZf9cBiy8OwrPQXUufVJ7R/4n+XQljixNb8W+YNiK26NlIDfP95SWymPrEmeAmYo55rD8WWkBXCa9QfyAOw4L+3v2De976+Afw39Tc5GreOoVZoL9pAf3Z/+exU2n4Ppv4F1sMK3tRgA8ZCLMVvoN/HY5XE18QG/ytQW/zkC2xyZaD/XZKBwUJY8cgWuXwwtuJtWLbGT9TNouoIHI6tsLmZlL+kP7e3xXwz3/XP+y8UYAK0Gp9VmDBXAyyV2tcGyyz6ktpB4CvU+t0WQrAp6WcyKBpIrUVMMvBth3k1X5a+59SKG58Cx2Xdh8ns947YarhXqRWp2ni88RoF9uAu09eF/JkzEthkEuemhfYZKtG+Zu5rN2q944dg4txPmLjeGhM9zvXv7mPAZn5dK6xI4m1YhnAhBvne7uT72hkTrj7yfrTFsvJPxeLqv/0zPwhbwVGDiXRzZt2PJvb5TCzb8R/gO/++bo6v0MAmSJNs/XQx1GkxX/5fk2d2ETZsRfIQv1czUiumr+T3cjTuP15yXQdMoKvBxoEfA4+TYwtNLP7/F5sISmz2GiO0D/f+FU5g935UxbiI6owlL/Y+XUJqUtOfwf/4M6m0KOiMmAXQCHK+Ir+k3TtjY5903bzu2LioMUL7bBR44je2Kd8yb0Bs1bFhgs2hHkyeSCqzCBNs7vQH9zGp/RNlG5HzzIWS/r6HWeIsVnLsGGyw/xWwke9rTa1H+6uUWQKd1y0VJHcHfsSKj5VWTd8OWD/18/EecOxcqXZOpb6v4fdxuN/vvzyQOAtfio750PUH+pHzQpCxVd9GrXd17zLBcQd/bv+LZeHMXHK8LTaZuBsFsPKq1mcVJk596wOGVanN/qzBMst28ffyd8DzWbd3Cvq5pPfpHWCt1P6OmLDzOnUHholgNTsmsg+iQIP8kr5vgwkbLwEbYzVv3qCM6IgJ8IV9FwFLY4P6UTROaB+NCXTTV6J9zdTHZEXGi9hqk84eS3xKqj4PtbH13/6cft/jkSGYGF0Ugb2Dv4O2wAsyYyuqbsEmFq6jto7EDFh9kNOotdNIJgrnzrovTehzL0xsvgbYFRNf+1M7sZ2seF0Qy4r8CROpT/d+/02xbNp6YVn5O1Bra5UWJbf146OxrOeVfP+qWEw9FvPbPwMT+XL92cZE87excd3WNE5onx2bUPmLlP1IkTaqYFxElcaS3o9TvR+X4Ik1/qx+jtpkje38e3sw5kDwC8WcMOqc+ndyz7vRSKE9tureMm9AbC1/wwYLb2DZR72xomtdS85ZjlrrmLRHe+Gy6bzd+2OD3CVT+9LB5K6YoPFuEkhhs+KH4Z5flHjZ5W3DBndJtmDiD/mCB8l1sgjLXLu+B1e5DpLraXupd+aG2LLOt7ECJ0tQUtAFGyi/kXXbY4stvVFbLPFFSryrU+d0plZov4G6E6SFsF2otmcVlrW9BrB4at/1WNbjGH/PDvb7Ok3yd6E222rFrPswBX1f0/v4pscVgglZE9nQ+flpoT33KzEm0fdtMaF9NCa29kjubeqcLlhByaPyHF/U07+0z+0y2KC+MUL7rVj2ayFEdn/mvu/f0S4lx9bw7+iyJfuXB/6HrU65DFu9UiSLmLn8efw15rWeFtpv9s/1raTsnlLXLo1leRfGisH78r5/jhP7n1aYLcGVfo/voFbE6grchWUAf41ZtW3gxyTv32UsA3YQsCwNiFHAf6gdC47FJha+9Wf4Fln3YzL6PSsmJo+g8UL7LBRossjbXBXjIqoslixpf1rDOM2/o5eSmsjHhPdkxf4YbBXWg/iEYd43zOJpeeqxmEvd8/qE9kJY4cRWmS3zBsTWsjcPkD/CMthXmcS5y3jgWAPsndqf6+Cxnr7cXi54oK5VzuHe1wNT+1oDB5LzwQKWCfcsllU1S2r/Rv7SeTh9/0r6PYP/fR6nWCsT1i39G5T8PcpVGhdgXmwJ8OV+fwv3eY6t5W3YoP0z6grsSSDZFtgxdW46o/0GCmS9UIXPqi5YlmM/4Bzqeu33xIT0IzC7gdJieqdhYsBMlW73FPS3E7Btyb61/LP6JpYB+gblC2R2wkSdQoiv3ubW/rncHFuGvkrJ8a0wYeodYL3UfvHPxo2YhcqiWfelkf1tTz12GNgkSmOF9iJ9phN7p77U2jclz+YVsJVHW2CFQOekQIXkJtHvBbEsyO8oL7R/R8q6rKj9xrzkBwD74nEjE4uUl/hn4FAmLhw5TfJcpxgCeydsFdEZlGQtY+LrNljG66Kpd9G6WF2Y0zHBdsFyf6e8beXaR+OE9puzbvtk9LWqxkVUXyzZDrNxWo8yhdOpK7TPndo/PfZuXh2ziploYjSPGxZr/OB9egrYO3kH+fEkXi6X0f5s1u2PLX9b5g2IreVumFBzPzZQmDu9P/XvTUkNjqgV2scDB2Xdhyno+zP47CYTLyFLv3jfxGb663jVF2HDKm1/jgkYs/q+GbGMlRq/j92oO0CYA/Nm+5nizGy38wA5ySzaiIlXYkwIEks+39Njg8JvKZAXXWwte/PP9AD/XCbZN0ng2B7LRHmQukslE6H9b+AeiiVMVsuzqivm4dwXEyi6+P76MqvS/Z0ZGwA+CXTLui+N7G9iyzaW1GS1H1uL2qz97VL7k+d0F3+eDy3KZxkT2C73725ijzEey4pdKXXedljm72v4cnVM6LoRW7q/TNZ9aWR/O2GTRcmg91zMEmja1DmLYCsk/8Y9yYu6lXwfd8cmS16grvVRUmQu2b7Hkli2BtYo97uKtGHezK/SeKG9cEv0gc2opyAedccHz2C2Gz2ybvMU9ncB7++OJfvPwATL5LP8JXBIfe+rPG/Uncwu58+cFtq3TH2uZ8JEyhrgmqz70YT+VuW4iOqKJV/w90sNVv9iQs2P1HmJ0F7Ho72Im39ekyz8IVhc+TpmXZX+fk+YQPF7fYhf80jWfYgtX1vmDYit5W4eLH8A7JN60aYfzif5g+l1UoVusKWfvbCCTd0p4GABWyb3BSUzn6njSfbKjf5Q71jJ9k1h3yYsm8IyIr8E3gJm8/1zYsuVR2PLQ0/HsgXPxASc7yiQNxuwGDbQ+cv79I8HWP+lxH6gJLDaBivw81OR+htby9+A+fwZNRrYM7W/vQeXb5V+tv14B8xX8icKUDeimp5Vfm9eAp73+5u8cyd6f2K2BOmMszn9XfQrBclw9nZv6zHE15i1xmElx1ejdqC0dmp/N8w+ZxSwfNb9aGRfu2KiRl9sYLsI5r1+ib+b+pESmam1jnkVE/WuxIToQgjs3odd/P7+iQkUSR2BwcAFwDqY2LMsNvH3D7Bx1u2ezL52w1aezJXa19P7/QJWAPNY/zwf5fd+U+BebLVoDSbgdc+6L03sd7lM11KhPbFT6YyJVV9hCTwdKtnWZuhr8kzewb+zC/jPZRNsgD39vm6UddunsN9tsWSiD7D6INtiY7wabMJwT/+bfOL3dsGs29zE/rXxd8yQ1L76hPb3sBWEi6b2zwycR4EKYlJl4yKqK5bsRu1Ewn7+vnnX7/WyZe5pWmgvZJH11P09DIuDr8AKnw7zvg3DVoFOVCcB06kOABbOuh+x5WvLvAGxtdwNGyCNBqbzn9MP5ROx5dxnYwO/14F1UscXK+rD2tu/BZZhdlZqX7llhHf6i6xQEwnUThIIVrC1NOCY2YOp1z34qvHA8uaiBdDenyR42gLLpkuyb97D7H2mS52b2DV8hA2OCyNaxVY9GyZk3I0VWduBSXhXp67rRIGKQ1bLswpbXj/EB3Z1ll9j2XIrAsuVXNPVB1BPYgPmpbPux2T0+ym/p739vh1ccnwtTJh8w//dHiuiWBjB2e/T5/4+WYy6yQodMGHjF0yEXy11bBtMeB2DJS0sW+m2T2Z/05/dw/259DImLG+GCeq/+vf1Y8zz90wsYeFHCia0+/0dgQnLpVmQPTFB6nO/j5uWub4jlsleiKxQf4fcTG09iHKCZCK0fwusmtrfGbgPi68K4zlf0rcl/L17Umpf+p4ngs9s/j7aPes2N0Of9/Hnczpr/XjqTiot68d2y7q9TexbR+A4zPblpdT+cp/rBfy7/nDJ/kKtZPY2V9W4iCqIJf1d9DEWT6UtcVZN+uI/16kZhwntYzE7yVmz7scU9H9xjyEe8J9nwGy9nvZn9m9Y8eU1S64rlIYTW2W2zBsQW8vdsCXLY4GlSvbPimVRbu8/r0TtIHi+rNvdxD52xLIwTvEHcbI8f15sCe+vwP6p89PZg7NjA8cL/efcPqSxQVFP3OOVugVQBDgaE2kmBByp43NjwkB7Uv5mRdioHezMgw10b/Gfp8XEqff8xfsacCGeRYYVTtmGMj52scWWxYaJEweTyrbAhIx7/DP8EyZqlMtg74oV1cv9Mu4qflYdjAnH6cK0gg1+B1MrblxFrbh1IjYwvpOc1wEp09/k2bwnNmjfB/Nz/ooSqzlqhfbXscFSkQT2LpjA2oeUrzgT29BtCIwE7i7ZvwM2OF58are1mfrbFbORmC+171hsZWAfYA7fNz3mP387JsInA+Ak66woPrBJ1mAvUuIEdSdSdvd7O4S6kyi5fx7X0+eeWBJKn1TMVE6QXASrLfARKS9vf8YXRmDHVlysQa1INwO28uRT6q6wKS06vhmWPbq6/1y4onrUFeJWx+KII/3726bk3C2B35P+Fmnz5/TB2Kqbvqn9deIP/+85/kwupBhJlYyLqLJYEhPOn/B36KpljvfCi/SWe/cAF/k7uDD1T+r5O5zkn9//lOz/yJ9P47EVZs9Tom/FFlt6y7wBsbWcrUzAtDGpIqbUHTRMU3Lu9dgAuBAvI29zV2wJ1YfYAOgXbADf1Y+v4oHUT8CpJdfOhS17/Y6cixseJPxCrUjzCmYtsAIwj58jWObCN9iy0NKAo17rgiJsHmzd7QH0Gqn+zIbN+o/0l/KX2KC/EL57sVXHRt2CPucC86aOLeTP3xrg6DLXdsGyU2qS73tet2p7VpW8U/f0AcBe2OB3TX8/JUvyT6W23skFqesWo8RLtUgbMIvfyyMw79NX/TlcKrSvmfpcTOSFnNeNWr/P02lAOMYsGRK/7nVKjnXJuh+N7GtXj4me83+nP99HYbZALzFx4sZM2ETKRVgMtnTWfWlCf7/Aik8n/r6t0v9NnbsHtdYxq6f25/45Vabf7YBj/Hv7Mu45zsQTR22wLNlRwB7lzsn7hmWxfgTcRt1aAhv5d/V5yhT2xRJ4LsIyYodiq40uLP1cFGGrr83UFS07Y3YTQ0jFJ3ndsDiibckzKvFnrldo958v8M9EIZ7LDfwNWuy4iCqLJb2dbam1meuFFWhOf0fvxSydXsHq92xd+q4FZsi6H5PZd0ndr5X93j9Bbe2P/8MmENb07Tb/jBcqMTS2ym6ZNyC2lrFRW0jvzNQ+wZYcfYMvCcRnP6mb3TAPNvg/j4Jk5ngw9YX3bwVsBv8UTFDfNnXe6thsfuIjeo/39XX/uyyddV8a2d8XvA8vYSLGUGqXfF6PZSd0xDLOBnnAMbNfW6hBUQN/g8WxDMhLUvvuw0SBzbEsnEewpWbx4o0tNxsmlH+A2Q2MxfwG504dXxTLZh6HT4qmrrsBG0QVJfO3Kp5V/g7qjQvG1BYBHeXPpDHYJO+JuLiDZVA+jA2icj1hUqa/nTB7ubXLHNsPE2Dn9Of0K8BwJraOWYGC+WZiAvLlmL3eUTQgzGBC84QCgxRokE9tTNVQRveRfl/7ksrMp7b2jRTlO4wJ7B9i8WH3kn6097/FdiXXJEL7c5Rk2RVlo3YSoa0/g7/x72uP0nvp/+3s759js277ZPT1OczCaF9gzqT/qb7t49/XftR97y6CTYrWYAXI76PM5FLeNhq5eoRU4UD/eVbMguFfYPOs+9GI9nfGaly86J/d7VLf4XRG+8ulz17v6zOYaFeomgL1/C1a7LiIKoklS/rcBltB86t/vuf3/ad431/DLCWTpJ3f/Lw9sm57E/rYCrPZWwlLhuxEifYE3OLv2jkx3eZnYP3U+6kT0DnrvsSW7y3zBsTWMjbMi+xOD5KOTe3f1h9On1HehmBaLKN7WFFewB5EfQw86/1OJg5m9UBiByy7rrvvnxMbHPXBMgv7UrIcuggb5n37iwcUs2EZRpdh/oKjsSXPj/gL+FcsI6UQywIb0fdW2ETSPVi26JKpF++GJedOm0Ubp6BvuRdgYpvie9wGy556DsuOqwGuoa7QvhBwFy60Y0LPDRTIWiPVlxb9rKJWkHwRW3afBP6dvZ93YpPWc5OyWfBzbseEnyKtGutArd9rDebBvXvq+ELep0P95xUxgWM4cGDW7Z/MPqczyKYDrvbv5tGUDO6oFS57+Of7gKzb38S+JhndfXAbEOoWmuuQOncioZ1iZvce6p/l60hlQPpnfRA2YZZY45Rax9QAj+FZdkXbqF9oT2yskkKnrTAh5GNgq6zb3cQ+3oSJcsvTgOAGbI/5zicFnIf5s2w4Kf/9hn5HHjYso/cympg45N+Dh/xvsI3vy21Mir1738cE1fuBgVjGdvpeJUL7SCyhamF/xi2BvX9/pUBZ3Q38LVrsuCjV7pYeS7YH1sZWQC5O7WTn5t6fJ72/YzA9J7HE7e4/X4WtyihE8gImjp9H7SrPGszy51J8ItTPW8o/0yOx5Ml1KWCcEVu2W+YNiK3lbNhS7av8oXW872vjQdSvHkDuhFdQ95fV3f4gWzrr9jeyj62xwUBNaUCIZeR/50HXj/7y3Z3UQIgSwSOvm7+ILmHi5W+9/GV7NC7SYBMNK2OiXZ/Ui6uGVFGjvG80IrD3oKLGX7ojsIJzyf1v3djfk4eNgqwaia3Z7vfiPijYAxPRE3/uuVPnJEL7P5jIk/sM9mp7VlHr4VxamGqSWcvYhO+L2EC/EFl0mMjaESvq+bO3/2X/fL4NbIoN9o/CMvQToW45P/cPYN+s+9EMf4cZaEBo93P+55+NXFvQlbS5CyZGvur/npDligkA/TBrjfSkQyK09ybn2b2T6Ptl/uy5jFqbwfcxwaas9YD/excKUkivgb6XE9pfxUUePzaTP6s+Kf175HnD7CDfwTLYW1N3kmQmbIXretQKVotgYvuV2MT2rsASfqw1KSuDPG5Ytv0HmJ1Eo5OH/Nn9sl+3lu/LbV+pa+80d2r/Z8BjJed2w4TLz7E46ktMgP28SM+sxtwLWsi4iOqLJbtS6zZQgyXU3ECtHc7mqWOHNfB7CjGW9P6+ja1MuAz4D7AzZjE3HpsQS/SpabBEyhrMijH3n9/Y8rdl3oDYWtaGDeITof0E39cGE9df9f1/+sv4Cw+wClGQK9XHnpiY3gf3PsUGCkOxDKR9fOuDFS1KCrymA+1cP7CxiZFxWIbJzCXHnsUsJ46lJDsBGxSvgAkehcjUx7I/12jovlB3gHuf/222zLrtU9jnt4CVs25LbFPl/qaFqgkWClg2+xs+QDiO8kL7gv4Z/5UCTH5W2bMqEdjLZfy2psQChrqFtmfBPEV/TAYSed+8vzd526f1GOI9bDXGKlgB9U/93XsqNsA/JPV5XxEbQM2fdV8a2d8OmPXAJZi4eCRedM2PT4sN6hOhvUvq2Gz+97iXAnnsA2dSuzphmtT+9lg8NRgXPagrtB+GxZJPYtmUuY6pUvd3/pJ9V3r/L8eEytfwDPYy1y6WdR+a+e+RFtqPxrKZv8LEyZMxa6vfKJAo6f1ZAVvVu03J/hMxW81EjBtW9HuKZfp+iAmriS1Z2boC9Vw/b+m7OY8bFjN/ga2gmcn3JYVs78BWpGyBWUrM5fs7YJMqJ2Cx1wTboLxvVOe4qNpiyeGYyL45lpSQ1F66FIsn2wKbYHpH7/S7qzHf7Txt1E1OWZKJV3ieg4153sRrQgCrYolJp2fd/tiKuWXegNiKudGAYEx5oV2wWeId/EV2kj/Aps+6L43sb2nhmp0xseIFYANsIPgGExcUHIxl4OV6qWc9fT4XEy0eqSfgGIMVr+pe+rkoygvYP5dJYLFxsq++c/2/+2MDqFMbOj/Pm39+aygpQBxb8TcsW+Nu4HBKBvAeTH8NrOs/n0x5oX1hfCBZhK1KnlUdsYzOPtgAuDV1M37fwgbzpe+qjtjqhf9v787jLLnK+vF/arLvCWsgQMK+CUQ2CSAECSIiECTIqoALKsgiIotEUTZFFhERBf3JosiqgKIIEojyZV9FNlnCvoc1IZBApn5/POfSNXe6Z7orM3O7+r7fr9d5zXTde2fO01W36pynTp3z8tRI7xMXHcs64z2y7dMz0hbTSo3m/n+pUYG/1bbdMMlTUyPWL0wl4A8anK8nMS1O+96+LZVYPiv1OPMPWkxPz8pI52OyMqL9d9qxcGi7jn0hE7mBMhf736cGXvzZ4Jhea0T3sO35oEznBsqhqRtEH87OC7fOEu1fSnKjVT57eGqO2H/OhG6grPP3Mtvf+6fmb/631M2TT6UW15tcEjrJj6cG2DwjlXy7WWoe7u3tuP7N1CKmX2zn9CPmPj+JNmW73nwwyQ13tW/XeG0SMQ7qe9+2//48O7YjDm/XqS+0a9B3UzeKNvUTgLuJdSn7Ra3ey9CWnK3RdEbm+oCpGwzfzMogjtkc7WenEtSTeUpurXizygCk9vPj2zH8l6l21cXbNWhLTO+k7Puy8Aoo0yupTvvLM5gjcf6Cmh0T7b+1L+u3F+I9OJXY+JW57fdKJdrPaw3No9r24Un7dUnetugYNhjvAYO//0lrPK6rwTHFhlXqkbHXpZIWt18rjkFj8uBUAuQDU4y3xfCrqSlBjlp0XZQ9ul/3Sz0KuT01wvfrqRuaNx+85xWpZM9sLYlHZ2Uk5SRG4QxiWZpzVeoG9XdT0xAME40Hph5Df08GC0YOXv/b1kF6ZaYzb+YRqUTz67MyinnWMbpEasq2L6dGes9Grd8gNT3btRZd/xHxHtb24etTgw8OadtvluTvUon2f8zKfKnDqWMenUrAfjcTuYEyiPvAwd9fnEq0PyM1MvbNWWXUZ7v+TnEfz0bsf6odv9efe322VsZTM1i/qH0X/jo1ivL6+7LO+/B3s23u56unbrKtucjvZi9ZWSjwO+3PL6QWbh4OxHlU+w7fetH1HRnjS1M39OeTVbds19oXpZLTkxhMtZtYj0k9LfXDJH/cts2eYH5rklukbqT9ZjuPfThzc3NPqc2RJesXZbnaki9s56TfG2ybtTkek2ovXnnw2n6pRPuX2j6eWj9htXiH56the/qVqbbl0e3n307d9L3MvqirsrXKwiugTK+kFoD4auqxx9sNts8n2o9PdRAvyCDJM7WSGin3v6lRJ/ece+0XUnc535o2p2Dbvl9qIdQ3pEYp7Te1C/EglifvpsFxbpLHJjly0XXdYFzDxdROavvqwt00KLe1ffmg9h2YzGjfVv9ZYvU+qQVdLpGJjL5Q1rV/D05y/3Zsvic1Kues9veXJblykju3Y/3Uwece0RqhT85gipGpla16rmr1Pzw15/Y3M7hxmxoZ+dassrB4e/2wds2exFMrrb4faJ25y869NkuozxLtX0glqmaP7U9ibtC5mLpUAvatqamadhgV19oRp6eSHc8cfO4SqYT09tbGOnHRseyB38VLWjyfzyqLmrbvwF+17/ekErBJrppKvv1vO7bfPL/PsjIw5WlJLteOjedmQotPZw88tbla22sqZVj31ECcp6WSdidkJZE1O4/dL9V/uN6i6z0izkNbu+LVg20Hpvo7Zw/OS9tTU19dctF13gMxH9HO1Re2tsYswX5cdkza/XFqROxOT6Vs9pIl7Bet8XvYym3JE1JPPp6VWqB3eOy+uB3X84ur75fkLqkpriYx5dFa8Q62D9sWs3Pybds56/aD147dF/VUtl5ZeAWUaZZUouaDqc7wzw62zyfab5y6+/mIRdf5IsZ7y9QI0a8mudfca7OpY96U5OS27bDUXLJfyiZ/vKo1jG+TGkH10iTPy9xUPqlHW9dqcLwlded308+r2Op7aGpEytuT/OVg+6oNyrkL8ZVTj4s+PdNaiOvguZ9/NTXK+ZhIsm+pknrS6H6puQT/tJ277jE4X5+Zeorhz+Y+99Bs8hGiy3auGtR7Nlrs0NRj2d9p568PpZLNJ6zymcMysZGvqdGrH2udnDdnlalPsnOi/fOp9QVm2yd3Pks9KfePWSNBmZqT/q/a7+UOg+2XSo2YncSUGqmRnzdNJSeelUpYXSU7rh3wD6kbSU/NyhzPXSrB/tep5NUkEs6DmGY3TJ6cmmf8Can5cFdLtA/naH9RppVgPyh1A+FXF12XzViyYwL+iNRTRm/JKk8gbdYyOM8e2M5JX07dSPjttu+3p5KQJ6XmPn5M23afRdd9D8V/RJI/SvUTzh6eewe/m99s3+/JjPjNkvWLsrxtydkxeoXUouKfzsrUe49O9Rtu1H6ef8JoW6Z3c3s+3k8ledAwpvbnrI19jQymSVKUi1IWXgFluiW1QNeHUiNzdki0zzUmP5nkOYuu78gYh3HcOvU491fTFjMdvDZMtN8u1VE6L5t8dFmq4/rPqekjPp16OuEbqSTcs4f1z67v7O+0UNdmLK2B/L7UvL7PSd0sOmTw+k4NysFrV0ryqrZfJzPvbWpOvbcneddg2yOSfCvJoau8f7KjyJQf7cODUotsXZB6mmiWrPq11MjI7e04n8xNliU8V21L3TDZf277LNH+sbZ/j2/bh6ORDk91Gr+TSlxv+u90q+cnUwnne6Y6sGdmlbkws3Oi/VNJ/jATW/skNTrsmCRfSRuIsFYMqbmdv5vkiav9LjZ7acfkS9r3drbw/QWpJ6oekR2n0XhJKoH1tLQnMFKDFiaTcF5t/yT5+dTAi+ulRjl/rh2/J8595s/aOfqc+dc2c0lyxXZdOS9zT30ue5k7Di6VSj5/PxNK5qRu1v9GVuZrvlyqTzSbEucDqQEcxw0+c7n2Xf679vOmvxat4/dwdCoheWFqwcSjB69dLDUl3xsykekYs2T9oixZW3KV+OcTzx9PrYVxQdoTrlvhe7qLeOcT7cNz8++kRrxP/skbZfFl4RVQNn9JdfYPTt2tPn7utbtlLtGelTuC+yW5TmpuuvsvOo4NxDtMrHcZ3LVP3fk+r12Q56eOuWdqSpnvtUbnph5FmEpqzBYDuUtWHmW9ZmqU2fbWeDpx8JnZXHUvz4RG37S6z6YheGN2XhByuM+HDcrbtW1XTc3Vdk6m18k/PDXa8Zwkr2/bfjWVZJ/c9ArKuvf7gW0/fz+VtDpm8NpJSa626DpuIJZlPFc9I3XT9pVJHrjK6w9IPY3y1qx0IvZr3/fntGvQDRYdyzrjPTR1k/qNqQTUtiQ/k0o+n5lV5pIfxHzx1GKhH0py8UXHMiL2/VPTLrwua4wSG7Q//jPJvw+3TaGkkjgfbN/fe6duLBycak+9ol1rn5EdE+0vTiXnnpGaU3UyCfasLDZ8yCqvvTrJG9rfZyNeV0u0PzbJdRcdy4jYr5GamuyCbCDRPqXjeRcx7DYxleRXUjeMvpbkruv93KJL6qmKj7br6XDNgIulptS8bXZcY2HWD7xu6ubpA/dlfffB72M4dcwTkxyVlQWov5HpPF20VP2iLFlbche/h1n76fjUOj/b026Ete2TPx+vEe+aI9rba69IDVDZaQCaomy0LLwCyuYuWemwvz2VPD439SjgQwfvuXtWEu2nDrYfm1qQ6zNZ5XH2zVhavH+aQYI8K/NYH9AaI7N5+L4634lIdaw+lTaf6GYtrYH4ydQolCut1sjPysJNz81gjr3WoPx+kr/PdEbRda2h9NYMEjbZ8ZHHtRqUv5LkBe3YP3HRsWw07vbnManHeb+f5N9T8/B9JsnDU4sF/kL7Ht851Vn66dSCVddZdAzKRdr/B2Ul0f6iTORR3rkYlu1cdWQqmfHxJP/VrjPfT/LUuffNRrR/q53XZonYyY34TXKT7Lzg436pp8LWk2i/WOYGAGzWkkqqH5vkxoNtz0klKna5dk2qM/yKRcewwXiH398rZ+dH0A9L8pft+/uYJAcNXvv7tv1bUzme2/fyQ63e/5uauuu6g9dPTT2FMnsk/7ezshjq9RZd/4sQ97D9dI1UQuqC7Dy94vB9V0xyl0XXfUSsl2ptpDumFrwcHrOrJqdSbdA7pqY7ek2Snxps39RJ9lSb8SOppOSlZ3GuFmt2XEDykNS6MJ/ORNvOu3nP/Bztz5vStTdL1i/K8rUld3kMZ6X9dLlU2+JTWWPO8imUDcQ7TLTPpsrZLzV912ezyaf4VaZTFl4BZfOWdkH6SOoRsiekOguPaQ2m7yd56eC9d20nrXNSc7P9Zerxo69P5QLc4rhLu8C+JIMEY2rU1WyBuaOy4xzt84n2IxYdx25iPDj1mPJHs/pcvsNG1TNSHaVbz73nsVO6ELUL6FszmGtwjfcNG5cnpW4obW/H+4mLjmOD+/ieqfltb9K2HZnq0H8zK4tSfb39fbVyQSY0p+QyldQNvwN38fp+cz//WjuG/yETGomzbOeqds39VGqU1dXatsu3n784iyMrCfX5RPvfpKYUmUonf1vqxvZhWRlR9qOkU3t9XYn2KZQW6/NTj6l/bHBuPqHt93cMv59Z6RR2Sa7eXn/QbNui41lHvIekbua+Z1fnnfa+F6cSNtece+3Zmcio0Fbfk9v183NJ/q99Lz+WSt5csb3nLUlePvjMg1M31T6QTT5AY42Yf/R9HWzbKdE+d76+cmoKhq8mudSiY9hArLNFiodtpf9McvfBe9ZMTqWmCrrMouPYQLxPSd0suv6uzjnzMbfz1WOTnJ/k5xcdxzriPCC18PSV0xazXM+1JXXN/oN2HPww0+onLE2/KMvXljwqNVXkLhehzeqJ58k9dXIR431YaqDDd6dyPCvTKAuvgLI5S2oE5H+mOvdXnHvtiqk79tszGFWV5OapUeCfbZ2FF2SVTvFmL6mE1PbUAlVXaNs+mORtGayqneRWqUT7F5L88qLrvYH4LpXq/H0+NapqpylDstJpOqE1TF7Zfp7c9CKpBMVVUnO/zh7PXTOO7DgS55R2HO80L/BmLa3R/+bU0yfvT41QP7C9dlRqzrlPtMbFsUmOS3X8rprkWklu0H6e1Aryy1JSN0s+k+TOa7w+bETeOTVydjZ1zDmp6QqO3Vf1vYixLs25KtUJfF+qE7gtOyabr9euSbda5XOHJfn1VILy/EwnwX54auTQe1OdncekJduyY6d+t4n2KZSsDFp4Y2qR4WOTHNZeOzDV7vhWO2/fKDvOiXvpVCfw05nIU4Gt3iem5iD/390dl6n247lJ/nz2O1l0/S9C3Hdu56xXJnlUatTnl1Lt4mcmeVDqptlPDT7ziNT1+vhF13+dMR6aujlwnbntw0Vsh4n2ew+2zxLskxkF2+r9mnaOfnxqKsyT2rn32+389DuD9276m2DriPew1MjlJ7Tr0XDu4uukBnL8bgbTkrVz2RNT/cez0topm/n30a5Fr2z1PbvFvMMN7d18/ugkD8m0+gnL1i9aprbkke1YfncG00Tu4v3DPsPb2jExpSl+L2q8k3paTplOWXgFlM1ZUo9vfzw7L2g6G0F3bKqDfEGSR8199kcdx0XHcRHiv39WEu0fTY082mmqhdSjou9rv6tJLDDX6n1cKrnx2VSHcFejYt+Y5IxF1/kixntkqhP0tF28Z3Zs3yjJUwbbd5pXdbOW1ln4aOrm2M3mXhtOHfOw1CiUV6/yb0ziGF7G0o7jj7fz0U6j4QaNxyunHkt/ymDbgalpgr6caY1mX4pzVZKfSt38+nxaMr3ts/1aZ+ADqYTOPZKctMpx8asZzGm9mUur78dSydd/btfQC1OjvI9a5f3DRPsbMqGRza3+h6RGDJ6Rekx99p0c3kw4ou3fz6bm9H1Javq5pyT5l9QczicuOpYNxn1AkpumHtF/X3axTk1WpuN7yaLrPSLOw9LmKR5su3sqsX5m6mbD0al25ftTN8N+mEq+D5NXu00QbIaSunH7+lQb+Tup0d073QBs771mVhLt90w9mTPFBPt/pW6S3SRzbcIkP9Ze+1qSX1l0XfdgzJdtMT1+bvufpG70D0fzP6C9dqnUSOc/S5sSK5t4Spx2LfpEKkH3hFTy+NupJOu6B5pkYlNrDGLf8v2iQZ23fFsyKwnn/8zKAsXDUfprTWc1a5NcscV+lUXHso/iPaF9dnJPkCmbvyy8AsrmLEke2BrBB7efd1gMtP15fCqh9/+yMm/5qnO5bdaSGrH/c0n+MDt3kmaJ9nOTnDLYvm3u93HzTGT00Vx862pwpEbW/dOi63sR4uxSI7jfllogb5ejL5KcnhoxePSi677BOPdPTQfyXxk8fbLad7L9Pn47NX/k6wavT2bqhWUrg8bkGYPG5Gr79iqpjvE/Zi5hmUraHr3oWEbEviznqjsmeVfq6ajbDLY/rl2LLhz8+bYkj569bwrX21bP2ZQ4r8/OC11+P2usA9Guu7dNJSdfkwmNLkslU9+TuZsjg9dn392DU08T/WP7HX0v1cb6myRXX3Qc64z10NS0e4e2n/dLcrNUov392XWi/UMZLL42hZK6gTKbg/0X5177hdR0KG9NctPB9vunRkNfu/08qQRd6qbCa1rMsxtk323f4ZPSptsYvP/aqUT7ealk9LczrQT769r3cdiumn1nZ8maa7fr7vsykZud64j7Yqm5mt+duuF319RNo+2pG/23b9te1c7LP9E+d0gmsHBguxad1a5FJwy2/2bq5tGvDPf1VipZkn7RKnFs2bZkVtpWb0gbFJiVmyTrmfpodi7bf2/UbxPHq9+r7JWy8Aoom7Nk5fHzVe9mDk5kv9EaXJMaWdbqfkRqQZ8PpzpJv5VKZA0TV/dt8b0sc3c6t0LDa67Bcep8gyM19/z70uadn3LMLb4LUyNsLjbYPhxJdlzqsdFnTaWhMaj7bLTrb+3mfbPO4WyO9u8kefui66/scp8dkRpt9fq0UeiDc/ABWZnbuUs9ffPyzCU6pl628rkqOz6Gf2oqqfGFJNdNTS1yfurG9w1TI8qekEp+bE893n7xRcewzjgPHsR2eNu2f/vz0FSS/S5znxn+bvZLPap+tUXHssG4n59KZuxq5Fw39/PRqVG/23b1uc1WUjcItqemv5nNsz9LtJ+VNRLtqRsoH0hyh9V+H5u1JDmtxfvZ1FNC9597/a6p0aJvTnLbwfYpjgTdNvi+XjeVLP/j1ICb56WSzOelRkLeOoOnrVIj2l/VPnO9RceygZh/tu3fV2UwH3NWGS2ZSjpvT3LfRdd7D8Z/cmrtntkN3o+nphycnzpzewbT5Wz2kmo3vT51c2D29PWwL/CpJH8495ltwz+3QskW7xetEfOWa0umbnx+KnVD95Jt2+xcfWDqyYzfXee/tVTxKsreKtsCqzs71em9VpJ0Xbff3Ot9+/PTqcbVIfusZntA13VHpEaWHZKaM/P6fd8/q+/77/R9v30Wb9/3z0+NajgtyWO7rrvO7N/o+77f+V+elr7vv5DkDqn9/cwkt++67oAk6bru4qnFbr+Xmnt+EjF3Xdet8dLrUg3JByd5TNd1V02Svu9/0D53mdQTDT+R5Jl93/9w79d2j7puarGpNyVr/x76vu+7rtuv7/vvpDrGT05yha7rrrDPasq6dV13UOpGYJfkN/u+/2Lbf9u7rjswNc/kn3Rdd1D7ft47yS+1/btlbMVzVZJ0XXdwqsOfJOn7/lVJnpSaauLNSZ6eetrqr/q+f3ff9+/q+/70vu9vnOoM/njf91/f9zUf5YqpztH5SX4xSfq+/2Hbj4el2hPX7rruMV3X3brrumP7vr9w9uG+7y/s+/4Nfd9/bAF137DBOfgqST7X9/0Fu3n7AbM2Rt/330ryhb7vt6emfpqK+6Sexnhykl/quu6Qtg/fntrnRyb5u67rrj/7QNd1l0hyr1Qy7x3JdL6/qZua70jto/9K8qSu635l9mLf9y9PDeC4WqrdcZu2/Xu7aKtsOl3XHZVKtF2967ptqQTVm1IDcralBtzcODWN5HGpKUNe0HXdA7qu6/q+/0hq3upr9H3/P4uIYYy+7/89NV/+HZP8Xtd1V2/b+8F7trffyf+krk/XX+3f2uy6rrt013U36bruZu3vh/Z9f2bqhskvpvb1jZI8o+/7z7aYZ85OJeCn4pjUUxWzBHP6vv9Ba1MldUPwOl3XvbDruj/suu7E1I3PtHPypCxxv2gnW7QteZvUzc6zUoNyZm2rg1O5js+lpqDbrWWLF/aaRWf5lc1VsvL4zNGpjtJnszI1wey14QiO30yd5Ha5ovNmKqnRdG9MTbswHI1x4ODv1537zGzqmBdnIotjpObnfnTWMbdadr6zf/Ekz07NDTuJucpSiapdjrJIjfZ+emr0ytuT/EFqhN3pqQUhJzfv7SC2U1Idhp/cxXtmI3FukZX5Mo/MYASLsrlK6pHet6YSUPdOG6HezmMfTE3Xdfnh/h18dtOPSGn1XLZz1cGpZORLUk9RfTDJw5PcaPCeu6Qeyf96VuZo71IJrck+3ppaWPm/U6OQfmuw/bHtGnteVub5/VIqWfvri673yFhn59tXt328y3ZS27fvzGCqoCmU2XE5+Hn/VEf3G6nE3PyI9tkc7T/erj9/lUp4TOqJyKy0iX+htScekUoufyvJL8+9dzai/Y2Zm5pws5e2jz6Z6hNcYrD9bu17+uC598/OW59M3Xz4zPx7NnuZv5a0fbs99VTK1edeG/aJPp3k2Yuu/4h4n92O4e2pJ4q+mOQVWWVe8uy4uO2hqTb1hzK9J4yOTT0Vtj3J/zfYPrsWfbp9Z2e/k3cm+cvM9Q83c8mS9YuyZG3JuXgeMDuWk1wi1Z74YOopusstun7iVZatLLwCyoIPgJqT/OapuckuM/fabF66tyU5tm0bNiYvlppG5V/THrebQkk90vm/SX462XFexfb3R7YT9yPmPverbfvzMoHHt5M8qNX3LzKYb3AX7581OD6duoN/bqZzQ+GQ1E2TG6zjvUekFiX7UJJzUkmdT6Q6T9dYdCwX4Xdw/fZ9/bPdfR9T86m+KRNK1qU6c2veQNjKJTXq6ozW+P/5du79363SmFyyc9URqdFj70jdPHleKik1m9/43oP33iUr06v8KNG+6Bj2wO/ghqlR+p9KLYb4yNTo9l9LLSJ4+dTizC9r5+dz5tsnUyqpGyrbk9yn/bzWYlx3TT21ctV9Ua89FNvsacBntHP07MbC7hLtZ7Xj/VVT+v4O4h7eVLha228PaX9/Q1ZPtN8llcj6t0xgzupW5yPaefaMrLJgdjuXfSYrU268JJVgv3HqSdi7tPPcLud83kwllUj9TJKT57avmWhvr5+SStjddl/Ucw/G+5/t+H14atqm2yR5aao9+aW0m7/tuzvsA14hlYg9P8mdFh3HyNiPTfLEtl+fkeR3s/Kk1aXbe27Rtr87dfPhious8wZiW7p+UZaoLbmb+J/XvtNvXeO8fUiSa2RCa9uIV5laWXgFlAXu/Lqonpm6S7091ZH/5SRHtNe3pR5b/06qQ3TrtIROkpuk7h5+M8m1Fh3LBuN+apJPrfHaE9tF9m1ZPdF+30xotFVWRmn85VoNjrlG83HtQrU90xqtcfVW5ztt4DOXaPHeODVa+OBFx7EHfg//klpo7ZSssQhxam7U/8yERpalRtJ9IsnTMoEbXHsg3gPaOfbSg21Hp0ZBfiP1KOTbklxqlc8enpre6oRFx7HBmLf8uaodxx9LJeFunZUFw/dv++wbqc7eLw4+c2qqc//pTCx5Mxf7/FMWs0T72W0f/twan/uxrNJpmlJJJXLekErenLzGey6e5IWpdWKOXnSd1xnXEamnEt6ZWnR79pTNjxZQy9qJ9pum2pzbM5E5ulNTGj0tNQJ/v7nXHtLiPDbJian5nr+ZnRPtd8pERvy2a8l7UzdD9pv/Dg/i3p6aLuafUgn2286dqyd1YzD15Or/pW6E3mrutVUT7ak25FNTfapJJGFbvWej0E/M3IjnJL+UmgLmK0muPNuX7Xt9euom6BfS1tGYyn5e5Vo0S7Sf2/bt7dv2+d/HxTKhtW6ypP2iLEFbcjfxzxLP38lgwe3B64cn+ftUf+LwRddXvMpWLQuvgLKgHV+d/bNSndz7pJLrZ7RGxk8N3rctNVfb/7aT2FdTCZ6Ppx7Lud6iY9lAzNtaA/F5Sf5f23bQ4PXrthhPa42T57SfH7noum8gxkOSXGdu25N21+Bo77tEKrl32STHLzqWDcTcJbl0qkP727Nti67XXoz3wNQIsXu2Y/XH0x7hTt2p/1iqg/hTmRst1zoJf9ves+axsJlKVh5V/69MeDTrBuI9LDUt1dvbd3dbVp64OTp1I2V7Oy8fMvfZw9v57XtJjlt0LLuJc6nOVW3ffCzJf6RGas/26bCzd+tUkuoDSU4abL9D6ibTh1OjhTf9+a0dx3dNS84Mtg+P51mi/ctJHjB4z5YbbZSaV/+jqUT7PTJIpLf2xt+mRj9P4iZ+278fSo3+u1Xazc+sLD520OznrJ5on91IPGHRsawz3oNT06XMOvPPzI43wy6bSkjP2iA/mRrl/c1McCHMrNwQ3N6OyxsM9+/gfQe142B7avT3rbLzDYhNf76ar2dqjYCPt32+q0T71dq2R7XjYjJTAaVukr0zNT3KcAqYH00Nmhrd/JXUCNHZAKxrJPl8KnF188F7N+V+bueqP0pyj7ntwyeYL5tKzn4/yd8Mtu+/WePaTcxL0y/KkrUlB3VfcwHerExx+zdJrjTYfmSSv07y3SQ3XHQM4lW2cll4BZQF7PRqWH0klVS/1GD71ZK8P8k/t5/nVxf/5dZQeUqq0z/J0WVJHp/q6B7Xfh42rE8Y/P0qqeTeaxZd53XGtX9q6p5PJPmJudd2anDMxX2V1Fyifzqlhlh2HK39+lSndv9dXYynXNp397VZ6fz+oP35uiR3bu/56XYMfLEd69dvDcm7ppK338pEbo6lEpMfb+eqSy66Pvto/34oNTr0wWmd2rn3XCw1KvbrqUeaDx189jmpjv5uHw9ecJxLda5KdeI+1757Pz7Y/qNE++Dvp7b4Hzv3b/xsJjJCssX7qRbH21OPbl82bVRcdkzoDKeOGSbaJ3sOz9pPEd0hdbNwe2othWclefkg/hMXXff1xpe6KfDG9RyT7Xh4byrR/muZyFQpczFcPpWQPCt1E+wlqUTjG5Lcvb3nSakb3LMbDTdPTQ2zPcm9Fh3DBmKd3dh+Q2re9XenppC44Wz/tz9nydjfbOe2P1503fdA7MO1me6d3Sfan5d6umF7kru216ZyXbpOq/fJw/06jCH1BMPTUn2m4Y3fSyY5ZtExrCPG/VLzim9vx/DrUlPu7dSebNeo2dQxw0T7pK5FWaJ+UZavLXloajqnnQZprPLe2Qjvv01ypdQN0b9OTQU0iSlxli1eZWuVhVdA2cc7vDrzr20nojvMbd+WevzvxW3bZOZr3kW8hyV5YAajOlOP616Q6vgf07at9hjstVrj5H6LjmMD8T401cl7W5KbzL02bHAM7/ReJdXRvyDJ9Rcdwzrj3D+DpxDatj9L8oVF120vxnx427dvSCXMj0k94vuQVAf37CS/1t57nXbsnp+aA/ZbqeTAGzKRBX1SSeP3rXKu2nIdhRbXwalHzV/XvpOzRMZOjcrUiPY3ZSXRfunUgk2TaUwuy7lqUPe/azH9aVZ5IiM7Jtr/LZWUP3yq1+Ek/9jifW9qSrovJXnuauef1KPpb04ltB626LpvMM6DkpyUWtfmxMwlINvfh0mPE1ILdr0l9WTCm5L8XiZyA6XFcEhqKo0/bMftcOTr7dv2FyW5Y1amGDygfWZ7Jjaye/C9vFo7P78/NTXI1ZO8MjVo5f2pa/EFSR46+OwtUtOo7DSH92Ysbd/+X+pG7+wJuVNSTyOck5UR7cPj+8fateg1WWNamc1c2jX0NqmnBLu51+7bzkvvzs6J9odnZZHmH02ZMv9vbNaS5Ph2vD5gjddn57JLpwZ0PGTRdR4Z5x+0ffSm1BPY21NPFd0rc+tfpAaUPbHF+5JF132DcS5dv6jF+NAsSVuyXX++m1rrYiOJ579LDbKaTB9hGeNVtlZZeAWUBez0avR/KdXJu0l2HFX2otSUMO9PjVL61bRFb6ZY2sV3e5LHZTDyPnXn+/tJfiftse3sOHXMxdpJ+r3Z5AsLpjqvRw1+vn/qrv7bd9HgeFaqs3+ZJP+cmiboeouOZZ3xHprqrL8vyZPbMXrt1Kijr2duNGAm1uFbI+b9krwglYQ9Piudn9mft26/j28kOW3wuZOT/EI7Jq6XCYw8avU+MjWy8wPtfDQ7V+22kTXVkkpIfSg1zcC27Dji5pi2/y4/2HZUqtM4+/2cs9kbk8t2rmpxDBOsf9liekpWX5xp9n3+k9Qo2Z2eZNjsZRDDXVLtjBe0Y/pf2r67oF1bZ0/ezL7TN0lNS/c/EzpPHZF6ymY2t/g3U2vVzEYyrzqivf18wFTPY6lE1HeTnD7YdnQqaXFO6sbuBak21p9kZQHBA9o5axIJ50Fsw/14zVTH/wtJfqNtu3Y7pj/b4n5KBqP1M6F5jVPTzz0xczcCU0nonRLtg+/vLOF80r6s7x6I93Wt3t9O3Sx5VgY3h9p77ppqj7wrya3nPv/QJKe2v08mwd7qe+l2jv7H7Pqm/mGptvXp+7J+eyC+2bF58VSf9sxU/+FRWZn66SOpJPzlsrJGynGpRVC/Nf892KwlS9YvyhK2JVssV0itz/PJdl5atU+UHfsPD2jx/1C8irLvysIroOzjHb5ygrpZauTr22aN4tRCNttTc8a+PjV6Y3vqTuDbkjxo0fUfGfOfJLkw1XG4fNt2aCox9b3UiKThAoM3SHWUv51NvghKVh7DfkaSiw22r6fB8YK2r8+db4Bt5pLqGPxVaj7IT7Z9+42sjCh6emr00bFZ5bH0KTYuUyNa358a8TgcQTZsWPxU+07/dwbJ2KmVVPL4rNTirMekFsg7OzUn6PBx5cl0ZtcZ9x8k+doq209v3+PzUiOCfzcrSaujU9NObPoFm5bxXDWIY3gj+9lZJdE+911+SZK3LrreFzHmI7OyaOJsmpjbpRIA326/g5ekRpHOkhvXzXTm6J6ta/P61I3MG6SmJbigHeO7PD9lFwn4zVhSbabD2t8PS/Kq1JRkv5/kMe1a/L0kL00ld05MtaPOzSa/+bfW/kklTa+QuQWms/KU45eS/O5g+01Ta6Vceyr7dY3Yh1NFDtsbqyXaZzeUTkmNDp7Eoq6DmP6knYven3rS78OpNuVZqUTcae14v0fqBuDbs8rixZlYgn1Q78e0+H9pbvvw/HSDVKLrZxdd35ExHpiaNuKCJLdo2y6ZmgrpTS3+96Sm25tNI3p4JjRFYZaoX5QlbUsOzrXHpQZhnJVdJJ7bttkaKPdOcq1FxyBeZZnKwiugLHDnV6L966kR689JTS1xlwwW00vNIfq41AizSZywUp3f+85t+9N2gX1iVh5fPjwrU+d8K9VBfmcqKfDhTOAOaKrx/8y27x63gQbH41rc52aTJ+d2E/8RqblST8vKivLnpjq/30uNLHtBarTRndKSBFMrqVHM25Oc0n5etTOXlcVfbr7oOo+Ms0t1Et6ZwQii1Ny2WzrRnuQ3Wox3Tt1ouGn77m5PPQr7V6mRWD/MjnNXH5NN/rRNq+fSnKvacdylksbHZuck3V9njRHtqZGk/53k4bN/a9HxrCPe/doxe+zc9ju0OB86t/0tqelwzm7n6S+mjQadQmnH8idTT8RdJiudwdlCgp+cwndyA/Ee2b5/TxtsO6Wdj76XlakY7pYdRxfOrlsP3Zf13UP799ltX/4gdVPo31OLQB7d3jNLtH8+ye8PPrv/Iup8EePdr11HbpJ6Um5+FPsuE+2D1y62t+u6l+J/XLuu/k5qDZubJfnz1JNl56XWOXlOi/vTqdHPt1x0vTcY4x1Sc+ffbu7ae92srBNxt1U+d0hqbZ+PZm5qlc1YUjcDbzj4eZaQu2LqSaO/m3v/61ML9r4rKzd/nzrF7/Egpi3dL8oStSVbvYc3vHaXeB6eq6/WzlsnLzoG8SrLWBZeAWUv7+C6g//jSX4pNRLjlnOv36xdeLdnx0d/t829bxINjta4+GJq5P2hc689ucX5pOz4KOgvph4j+/fU4873y4RGAreYH99ie3ySiw9e+7XW4HhH5h7jTXUorrMv67oHY97pAtt+fnNqWoJrJvmt1OiNd6dGsJydia0eP4jrGqlO4K+vEXeX6ihfKfUY/0MWXeex+7XFcIlV9vVsRPvbktx0/vWpl9S8th9t5+OPpTpDn07y2LTEVZJLpUbbfaJ97ycz+qjVf8ufq1Kd/NPbueiHqWTUx9r195jB+2Yj2p+almhPPZnwd6kRk1dYdCzrjPfw1EJT70p1gF6a5PD22lVTiaoPpCXuUuu+fDM1bd1lkjw69dTKNRYdyzrj3TbYdw8cbJ+NoHps6gbC8Yuu6x6Kd7YI5n9m7sZBal7bGyb5mbnts3P2Hdv57KcWHccG4j0ilUT979RNsHu07+jHUu2I52TlSaJrpkZFfi7JY4bHyKLj2EC8hyd5YWpgyfZU4uqzqbltjx+8b5jMOCXVrvrm/Ll6qiXVVrwwNbL9oLatSz0heHrqBv9XszIyeDIDGVLrBgzr/pLsuAD3KVm5of+nqekHuyS3Sg1M+n7a9F6bubRz1cfavhw+jbGtlb9I3TS7Wds+uxb9RCpx+xOpOcyvvehYRsa/NP2iLEdbcv+5n7cNt6cW6v1caiqru86do6+U5BXt9zOVAZJLFa+y9cvCK6DsxZ1bF6HXphrP57UL6vmpUWQ/kZVHuG+S5CvZeZTo1B5nns3j/Lqs/Rj+MNF++bnPH7joGC7ivp6NWHh8dryzP2xw/MSi6riH4lxrBPe2VJL5dUneOPfaoank1U5zIE+ppBJvbx7GvMb7zknyqEXXdw/FPN9Z2FKJ9gwWDGx/3jCVsHx9qrN39ey8kNWrk7x30XW/CDFv2XNVi+2t7Rr7/2VlJNl7UgmcZyS58uD9wznar5a62bvppykb1P/IVELynanE87+mkhjvykqi6iEt9lNST6mcnRoN+6N5y6d27U1y2/YdPTvJPede+5d2rj580fXcQ/v3U6l552c3SdZMIGfHaZEunprr+T2Ze8Jhs5bUIrZnpG4oXDE7duIPbfv2/CR/MztvtXP0f7Tf0xMWHcMG4z0idWP3zNQ0ZDdKjW79t/adfXl2HBU87BPcOnXz5fOpRbsncw3OGvOPZ9f9g6NTo/wfk+QnFx3DBmL9r1Ti+dTUjc1HtBifPfe+m7Tr0fezMtr3q6kne++02u9rM5Ws3Aw8c63zTbvuzJ5oflXqSe4fXYumWtbaL9ni/aJs7bbkYam21XPauXZ+0OCB7c9h4vm0tu1yqRtrk5lzftniVZajLLwCyl7asTU65SOpqWDuklrs49qpx6XOSi3adLesJNqHyavJjUxpF9tZZ3A2KnB3DeknZsdk/JoL/2yWkl0vpDZrcFzYGhzDUZO/2o6H/8uEFrJtMf1F6lHX+UeYu/m/J/ntVMfgSoP9ud++qOte/B10rbF8empk7J8NXtt/7n23bN+Dkxdd7w3Ed3BqipQ/To2w+b3UNAOzc9OuEu1TPFcdkrmpMVIdoR0Ws13jODghNS3DX2eTL5y4hOeqI1Oduv/MIDHVXrt6ajTsLNE+fFJjlmj/ZCrBPon5q9s+/ETqyYoT2rYDkjysxfMXbdtlk3ywbftKanTkpr/WrhLvAXM/3zLV3vhGWqI9ta7CebP9P6X41ti/H2v799i2bbbfDsxgipRVPnud1M3Cb2UiN4xavU9q552fHR6j2THZ/srUjaRfHrznqu169MEMRlRu5tK+q//WjuErzL128VSyfXtqXvLhjcFhu+vkJFdcdCwbiPmxqRvZw3bT/CLjw/7BcMq61Z4e3NTf77Z/Pz6/j1L9wG+l5vEeHtvbUtPH3CvVlr757LObOd6srI+x25uBqac2tqeeeL75/H6dQsmS9YuyZG3JVvf7ZuXJk8+nbpbdPIMbSFkZpHPZ9p5PpRb9nCWcT1x0HOJVlrksvALKXtiplbB5Qepx1+PnXjso1ZF4Z2tk/OTgtZumHu39SJIbLzqODcR7eGtIviFt7tvByfjA1vD6ybnPzBrSj09b6Gazl1Qy8owkdx1sm29wHDlocDxy7rXfSo0qO2HRsWwg5tmc+Z9Jjbi6V5Irzb1n2Ki8Y4t9Ug2qdf4uLtX2/7eSPHWV149JJTben+mMHJyN/P1oazB9InUj4WupkbFHtfetlmif4rnqwHbu3Z6anuoXsnMnaZgAGD7yfMnUCMovZ5PPjbps56p2DfpkasTYcYPtw/13TGrE+g+z85ohf9OOiak8xnxAanqBb2WwaHh77RKp6SZePNj29Bbf7yy67iPjPTA1ovNJc9tvmRrIcHaqo/e92TE/f7xPqSTZP5U0/mGSHxvG034XH0wtuHz03OcunprL+i3t3DyZBHur/4NTN0kOWeW1YZvyw0nOnHv9ypnIFE+tvtdt+/Fug23z19kHt/Pz784dA5M7trOywOl5qaeM7rXa/m1/HybaJ9GWWiXe2c3Op2WuHZVqR380ycUyuOE7xdKuvWelbihcvm0b3gx8SHa8WXK31BQxz08byDG1kiXqF2XJ2pKDep+YWgvvraknis5KzUbw/5LcJ3Pz6KfmLP9UOy6+noklnJctXmU5ysIroOyFnVodnQ8kecQu3nPj1Cild81tv2Uq0XXCouPYQLyzRU3vO9dQPijViXj7ag3lrKw2/vuZwF39VGLx/1JPIfzcYPt8g+Oo1rDenp1vLhy96Dg2GPMvpOYY/1BqhOj2tk9/P5XMmU05MOs8HJcasfGgRdd9RKyHpUZCHrDKa7NOwxWysvjlGamnVK7bGiEvSiW9rrfoWDYQ74dSN8du2rYdkhpt8x+phNVrs7LQ3Pw6EVM8V105laA5NzVq+Yft53snucrce2cJjW1J7pmaR/WrU2hMLtO5qu2fv8pgYeLd7P/Zop/HZccRWpfam/XcwzEfl3qa4oIkj27b9svKUzcfbL+T2fn54qmEwCsXXfeR8R6bSsr8YBbv4LVbtmvT+UmeNdg+uUTkoO6HJnlkOwc/Kysj2Q9o+/ZtWWVh19QAjlenEh4nLDqODcQ7u74+NNVhv1hWmUIiK+2MR6USOlfP3EjoqZRUYu78JFfbxXuOSiU8zs6ERqyvtt9SczF/q7UZvp6VG933TXLEKp95cvv9PC1zN8KnUlJTony/fZeHc1Y/tMX/tbZvn5fk11MJ60Pbezb9Md3OR7OE85Xattk0ZQemEnWvn9+/qcTdRzM3JcVUSparX7Q0bclVYn9Bqq143dQgq8em1mnankpGPzZ1rZ4d85dPDQa43qLrLl5FkWTfkiU1t94P0hY5zSoJ5NYAeWQ7eZ3ats06GpO4u5+VJNRVUkm5s5P8/Czm1uh4a1bpDA7+jT/KhBbJSM0F+5bUY/d3mP9dDH6+Rqoz8bS0efkWXfcNxHjQ4O/XSo1CeHO78N47Nd/v9tbwelYq8Ty8ufLlJM9bdBwj4r5Pi+uvs+sO/rGpG0Qfy8rjdZ9JdSZ+bNFxbCDeJ6bmS7zKYNusc3BAahqN76VG5+80srC9bxLnqrk6PzqVoLlLaqTgu9s+/EQ7H10uK/MPHpKa1/gTqYTANRdd/w3EueXPVa3+25Lcrp2XPp3djN5t193zk1x99vlFxzAy7sunpr6ZXzT9ce17e+X2836pG96zDvBtFl33DcR4cFqCJjUf8yze+UT7rVI3C7+ewRzt88f6lEo79zwsdSPwaalEzaxNtdPC8Flpjx2VuXUkplKS3L7t31UXeRzEeKv2vustus4bjO/Awd/vnRrVfbVhbKt85pdbrDfc2/Xby7FfKZVo/IfUqMnTU0/czNqSv5S5BS9T7cvt2cWNiM1eUutkDG+GntpiellqypF/TN18mI0IfW0mMMd+2jROqUFWn0/1AWcLbh/WzlVvGZ6rstKGvl0m9mRVlrRf1Oq+FG3JQRyzXMzV2nfzBYPXrpha62fW9/toqk/xk+31ycW8bPEqy1MWXgFlL+zUGi13fnZz17o1Or+b5MGLrvOIGA9LJd9u0X4+PjWy96vthDx77Gi10VYHZqIjGFr9b7dWgyM7PiL4wSQvXHR9NxjbbKG1Xxlse1wqKXmr9vOVsjJ6cDYa51lJbt1ef3rmOktTKKn5MR+e6hD9TVZPtP9oPsV2HJ+UWrjpuCRHLjqGDcb7+tWOz+z4WP6/tkbXzdu2Td3x2028s8T5pVJTi/x76wgckuQXU08ofC/1FNLfpk311c7nt8sEH+veyueqWRztz22p+Yn/J3XD63qrvPeA9udNh+ezKZfsmGh/YGpRwAuyslDesJN/63auPn7R9V5nbIelbpq8ai7eP8/qifZbpqaO+XqSeyy6/nvod3BoagTwD1MjYt+eVabXS037dXom8JTNoM4Hp6aOeEoqaX5QqkP/0exmdFxqCopPpU3DMYWSlbbVr7afb5xKsj95cM0dnpNn267QzlenLjqGixD7rN30u+27O+s3HJW66TlrS36y/XzFwWendGP7qkl+JnNP7qbaUeelnnb8QWqO7sMGr5/QrtUvG16nN2tp5+bZujSHpUZwfyXJa1LTsr2/natWHWCVGqjy1qns2yxxv2gQ75ZtS7YYdrox3a6rr2j78maD7S9K3TR5TKoftT010v+ITGDQxrLFqyxvWXgFlD2wE+fmSWwNiE+1i+2uRnEf3i5Yay5gtVlLKlGxPZVYv0nbdoX28/bUKN8T1oj5+anHmTf1yTmVfLtPat74u2fHxz1/Zr7BkZVO0X5JrpnqKD500XFsIN4dFi8aHM+zpOQbs+Mcxy9r+/lfk3yn7fc/ztzcbZu5rPLdPSrJI1IdoZ0S7XONyYtnojeL2r7+bNocx/PfxcGxfNnU1CpPWXSdR8Z5VJK/ndt2QGoE2Q+y4wJ7F0sl2L+Vuvn5jXZs33TRcawjzqU6V83FPotlt4n29r4ntPPWpG6KDerfZcdpbi6f5JnteN6e5LTVPtP+PGrR9V9njEemkq2ztsRwBPDuEu2vX+v3sFlLKsF8iyQ/lfaExeC1Q1I3UL6X5O8zt7Bnqk311y3mq++rOl/EeI9IrVn09lRS5hZZmSbjoVlZ8PM6bdvsCatt7br70tRUHJNoa2T1hSEPTq0P8pkkp2SuLTL47C+mRgpfaV/WeS/9Hm6Smo/7n+auUc9KJaFn66V8M8nfz312U9/gTyVR358aaPSo1CCF4four8rKFDnDhbdXG8yx2WO9e4vlhPbzIalE+5fbeeod7bw03648PDXy/carxb0Zy/x3N1u8X5Qla0tm5Ymx07PjUxez/XxSBm2Ntn/PTnLy4L13yESm81q2eJXlLguvgHIRd2Ddxf+z1KNy/532KHY7iV2YGrFw6OD9w5Flt2gX459edBwbjHl2Mv7pVMf+zKwk2q/YGpPfSi32MmxkHpGaJ/bCJDdYdBy7ifGIVAfw46lG8/Ykz80gMTNocHw1bZqctv241MJOk+kYZWXxotdm7sZQKin53NRIutkIpFekkpCntJ9v1i7aU5r6Z/jdfXNqRPq2JEenRlztMKI9OybYr5xKArwsE5wTtu3vTyR5+Xxsc/t9/9RjsC9ZdJ1HxHhkqhP0jiTHDONM3Tw4O4MRN6k517/cvtenpBJXn8/mX+R02c5Vs7UTdpr2JLtJtKemNvu3VFJ6ElNqrBVvdry2Hp/qyP8wc4nnqZWsJDVek7ohcl7mpkfJrhPtp6TmJZ9SwvmM1ELS21Ntp7vPvefwVFvyh6lpvC45ODaem7oR+uOLjmWd8R6emlLhjCQ3zypTjmVlkcx3pG6Ezp5CulHqmvzNTKStkVXaVoPr0PXadeitqRss8zf1j0mNIvzPTHRe41V+H7OE+lXbz09KtbXumXqa8KRUgvLnFlnPDcb0+tT83I9o15i1Fk//51Sf6ZFZWetmUm3HVuebtzhuMNh2SGrO5s8m+a+szNs8S8IenuQ5qae8JzGt4mrf3eF+zRbrF2X52pJHpPp+/5tq7x8+93qXuln2ytT1+czU9fk22eSDBMWrKJLsky6pzuCHUh2Bf0mNYvhmKnl+ULvgfi9zq6u3zx6TWuzmfUkuvehYNhDztgxG0qXmavthdky0H5+Vx7bvlErUHdIaWOdlk3cGs/Jo4BlJbphKyP1Ka3Dcbu69P9Ni3d4aGC9MJW2/lok8ut0aku9r++uqc6/NOoNXbMf2s1OdvrNTN1mGN40mcxFe47v79aw0li+RSrTPRrQPR1LOEuznTmUfr/E7eHJ27CCsNSfsOzOxJHtWEnVvWOXcu601JJ/Vzs8/mZoX9etJbjv/7yw6lnXEuUznqv1SHYDZ/JB/m+Quc+/ZPzX9xAdSifbrDn5Xz23HxVX2dd33VryD9x6fNRLPUymD4/mN7Rx8n1T74prt9eGNzl0l2lddQ2KzlazcCHxLau7tB2VlNO8pc+8dztH+l6kpJibRphrEsH/qZuaZGTzpmME0bINtv5uVRdc+m+SLqacbPpKJzMWeXbStBu85NdWe+kTqZtqxqf7Byak+wrcykaTkbn4Xs318/VRb8q9SNwZ/0I79YWJ6p4ENm7Wk+nkfaXHNpiTbPytt58Pm3j+bo/13027+T62k2k+fT3sKe7C/DmnH8FeSvG52Hk4NXHlO6gnBqZyrlqpflOVrSx6WSja/MdUHOLhtX23qrvtmZe2tm2ciT2Esc7yK0veS7JMtqTuCswvSFVuj47DUyPRXtvdcIzXS9cJUIu++qYUl7pPkxanG8y4XadssJSsjibYN/2x//5msnmg/ozVQ7pZKbmz6zmDbr59oDcTLDrZfvl1w7tAaH8M7+yemHg/9cGrU73MznVF0s2TkD1OjeJ+Y1ikY7uvUqI3ZI+mfSyWxNn0HaBf7eK3v7qsH7zsmNeLoh22f7t/e/89JzslEGpO7+D3cJjWv3ntn38vsPBXFNVOjgn9j0fXdQFzDzsJl27bVzlu3bufmc1JJnJ/JSudp9v5Ne4wv27lqtl9SnfXtqdGf32h//39Jfi7JFdr79kvd7P5g+12clEpMnpuJJOjWGe/86LoTUonnC5I8ftH132Csw/PycW3bTdv59xfaz/NTaVx+4vF+IjUK9rjB9pulRnr/dft5mLA5NJVoPy+VyPp2Nnmbai7my6Vufv1G1lgwbS7eH0uNcP7TJE9NJaR3mpN+M5aso201eO+N2u/lB6kpJr7ejoH3ZiJ9hA38Xg5OTZmyvZ3P7pMdF5XcYY7nzVxSi6d/OIMkZAZPNrbXz06b9mjwntmN09/LRBJYg5j2a/vw7RkMvshKm2k2dcws0X6p1Lohm77/N4hlqfpFWbK2ZDuGn5964mLVUffz16d2zvpC2vQ5U9rPyxavoszKwiugjNhpKwtyvT6DUZKtcfjS1AjJU1Id+5sk+fWsdI7PTyV0XpeJjE5p8X4m1Ql4bottvnP/c61B8t9JTmrbjm9xbs8ERjC0C9GLWn1v0LbNRmgc3/bhe1Md+vck+b25z8/mFD1gX9X5IsZ7ZOqxwNem5tN/ZeoRwCelPUaWHZOSt2m/m+cvuu4XIebdfXefmVrg56SszJ36qHZsvzgTG8He4v31uW3DEQuPaPG8K4OFbtprl2rf909llfUVNmNZbf9mZaTGQUnelLbwXNv27LZv77Xoum8wzqU6V7W6Dtc8+WySF7T9/aRUQmp7aqTO/bKSpP2JJO9ur02mk7/BeO+TQccp1TF+XmqE3cUXUfcRsR6RGnTwurnz8lXafnvYar+b9vfLpUbTfWNC8a72/R3G9JokL21/P2jus0embv5+MRO6YdTqfscW8zXW8d79p3R+WmUfrbtt1X4+NPVk6G8neXRq+phLLTqWDcT8lOxmUeXsOJr9a0leseh674GY/yerPDmTGlz0vdSN/K9krr+XSmLdbl/U8yLGeFhqAMKVUu3k2Wj9x6YSrEdmsC5K+3OWaP9cqu93XpLrLzqWdca7VP2iNa5FW70teVSqz/Oo2e9g8NqtUje//iI73jx7UKqv8FuZWMJ52eJVlFlZeAWUETst+c12QXpK+3nWsDgi1Rn+cipxdX67OF0ptajejZLcOTXdxFGLjmNEvNtTU2xsTyXeXpTkXlmZZ/KkdlI+I8nN27Yrp+6gXmdR9d9AnAcluUfq8e13pXUYUqM2PpRK1jwwtRjM+1JTbTxk8PlVF67ajKU1rL6Tevrg8oNtr1qlQTm8IP99Knmz5oK+m7ms87v7nXYcvzetY5Dk4e1zF2ZCiY3UqMftmVtceW6fPirVCTwvNWr2wamRO69JjcI6cdFx7IH9e1BWpgc6dvD+e7bv8dPbz5v+uzuIZynOVXNxd6kO/HNTnb4bpkaUHZN6/P6tbf+/K8kfpRZJ/PlUgnrTX4MuQrzvSM1jfWQ7jx8xPM43e0k94ffq7Diiu0vd6Ptikj+fbVvj88dmWtPuzX9/ZzeFZuerlwzOV69J8ksZJKlSCejJTTWRGol+flqSPatMpTD4HVwjbWToau/brCUba1vtNE3OFEtqIcsfpKY62m3bsH2vZyMlJzFf9SoxHNBieHX7eTil4I3befmRqQFI7089nbDTNWgzX4Pbd+9fs7IY7YdSg01+uf35tcExvm3uz0NSUxL+z1SuvRv87m6JftEq16Lj2/Yt25ZMPfF3dpLTB9uOSfLyrCxWOyuPaa8fmnrq9dWZ0A2FZYxXUWZl4RVQRuy0Ojk9uZ2Q/qhtOyj1aPrbUiNQDk3yO+0E9pZMaETKGvH+Ybu4/kXqzv3T2kX5O+1E/MrUKKUHpRKRL0/yU+3zkzlBt/14amoExttTN0g+kEpmXGHQgLxWKiH72kxk/tdVYr1edu7cH7CrBmWS07LymOtkGlWDmNf73X1Y6lH8t6RGAVwylcC92qJj2GC8R6Uetd+e5LFzrw07CXdMjer+Rqqz8NHUaNjdjjjcTGU3+/etWaUTlBr1/vmpfY+X6Vy1Suw/2fbxn8xtf2PqhtGsM/j1djxs6rn191C856VGDT5+oufmtaYPeXdqhPu27DiC8Ih2np7EE4GrxDX8/r5ncC3+g7av35JK9nw5KwuivjN1Y3By+7fFdrV2jD51sG2tGyf/nuQFi67zyDg30rYaHtPdan/f7KUdy3dKPfH67tWus6t85tR2XP/63q7fXoz7ZUk+Nr/P2r7+ucH2W6X6Ra+a4L69RJKrpwZU/V1q4cRvpqZT2Z4akDF/02iYaL/EomPYYLzL2C9aqrZkao2Ad6VuIjwy1Y74RKrN+NLUDd6TU3PNb09yy/a5+2VifaJljFdRZmXhFVBG7rgaMfbUdkJ6fOpu/dtSj2oPG8pPTY2Kvfai63wR4z0q9Wjk9iS/07btn+SWSR7XLszbUyM2ZndE/2GKF+K5Bsf2VKdhp1FyraHx5kzoJsJu4p41GFdtULbXDkwtcHPNRdf3IsS5ke/uhbPvbiY62mwu3seuts8HP18rK/OYH7i367aP9+/8FFf7pUZq3T/1ZM4k5vqdi2Epz1UtpuenbvJesf380lRS/capKURulrr5O9lz1Yh4/ykTHRm6SryzhNV/tON6eG4+PCtz1U9iEds1Yjxw8P19SztvfT/JLyQ5or3nMqn1I56dSrJPttObakf+d2oE850G2+enTrlmatHqBy66znso7l22rebjn2KZO5Z3mWhPPWF0zXa+uu2+quMejHV2bnpAqo34G4PXdmonJrlOaj7kuy+67nso/iul5uR+deom7x/PH8tb4Zge7s+1vrvtta3QL1qqtmT7Tn469QTO9tQN7Xtkx3nnb91eu//wWJhiWbZ4FaXv++wfJqnv++90Xfe49uPDs7Kg2heTpOu6/fq+vzA1QvKLqdHek9X3/be7rnt8ajTZU7quO7rv+99PNRz/q+u6p6Ye2T4tdSK/WZIn9X3/vUXVeay+78/vuu61SR6SGsF/UCoh9yNd110+dXf4HamL0uT1fX9hO25/0HXdXVNPI/xqknRd96S+78/t+/6Crutu347tSdrgd/cL7fVMNea5eB/bdV36vv+j9vOPjt2u666SumH2pdQTKT/YtzXdM3a3fwcOSSWufjw1vdUX9mE194hlPVc1r0ty7yT37rruBqmFTu+e5D2D7+9bFli/PW3Z4t2WSmB9PPUdvUzXdV9KJdifmhpZeYO+7z+xuCpeNO16+u/txz9JjTB7YN/3L+u6rmvbv9r3/Ze6rntTqtM7yfNy8qN25INSx+kfdF23ve/7f+37fngdOiZ13r58aqqcyVtP26rrum3D38PUtGP5tam2w18keVXXdaf2ff/5ruu6vu8rO911l07NOX+bJKf1ff+R4etTMKjrvyU5PcmDu677TN/3r237+qC+789Pkq7rDk/dNDssNTp4kmb7qP15Vtt259Q6Rb+SpN8qx/LQEvWLlqot2ff9/3Zdd/PUDaND+r5/3ey1QR/wsFT+5qz2mSnv36WKF5IYyT71khqZ88TUBecP5l6bzXn1+rRRSVMvWWNUbHYeiXT0ouu6B2I9OKuMzEk9pv6cVFLjqouu516Ie37kxheS/HkGIze2QvHd3eG1K2dii7pexP07+w6fm+SGi67rHoh1Wc9Vb2j797OppPOWHnmzbPG2mB+Ymo/+6qmn556TiS1iu44YD0qtHfCJ9v2d3FM1G4z3Z9q59zOpG7uXTq1bdKfU/MbfzoTWPtlA3Fu+bZWdR7RffvDapZM8o53D7rLouu6heG/RjuX3J7nH3GvHpZLw309yx0XXdQ/HPVscc8sey3PxbvnvbotvKduSLcb9B3+/WGptlHdmwtP9ildZ5rLwCih7YCeukrxKjbZ6bmqO4y3x+Pau4h28NmuITG5eujViHT5C9+7W0X92ku9tpU7+KnEPG5RvTI0mvOSi67UX4lzm7+7vt22zBPs52SIJ9nXs362aqFuKc1VWHkm/W2pBp+csuk7i3Wux/3z7/v5skr/cat/bQZzz39/JLaK3wXhvkJqL/oJUEvJ7qZsM/5WJzrO/zri3fNsqOyfaL5NK4jyjfZdPa+/bKv2EU1JrJpybWij0ga3d8ZrU4qBbKt5B3Fv+WF7GeJepLTmIeTgd3XWS/G37Tk9i0V7xKsrOZTavGxPXdd2RqQWrHpYaPXmJJPdJcrO+79+3yLrtDXPx/kHf909YcJX2mq7rDkpyu9Rir1dMdfJ/civu16HZI2Rd1+2f5Ni+7z+/6DrtDUv+3X1marTV7VJTprx/gVXbK5Zp/y7buarrumNT84N+I7XQ9ncXXKW9atniTZKu666cWrDrK6kFqG/e9/17F1urvaPrugNTNxOenkpG3qLfeZqrLaPruosnOSE1v/N+qbV9Pt/3/TcWWK29bhnaVoNr0bNS81i/P3XdvXvf9y+fTYfUb5FOcNd1V0+1MU5O3cg/PzWdzMv6vn/zVot3ZhmO5aFliXfZ2pJJ0nXdxVLX3sul+kV36/t+slM87c6yxcvykWTfQloy5zFJfjfVQbrRFr8gDeN9VN/3f7rgKu01rfP780l+PclDluVCNJirbUtb0u/u7yV5RGre4xv2ff8/i63V3rNM+3fZzlVd1909yT+mOggvX3R99rYljPdyqelxfpCag/2DC67SXtW+v6embgzeoe/7Ty22RuwNy9C2asfyz6SeQDkuyV37vv+nLZxw3j81iv+SqRuh3+23yNzku7IMx/LQssS7hG3JK6WmCX1jkmdv9WvvssXL8pFk32K6rjs6teL8P/d9/9EFV2ev67ruqNQiVS/u+/7Di67P3tR13cGpFdUnvYgtq1vC7+7REe+WtEznqq7rLpOaI/U+W32/JssXb5J0XXe/JG9bongPTHJg3/fnLroucFG0a9Htk3y57/u3bNUE+2qmtqArzFumtmSSdF13WJIf9m3h4q1u2eJluUiyb0FbaWX19Vi2eNm6lu1YFi9bQdd1By1TJ2EJ45WsgokaXnd9lwGAvU2SHQAAAAAARtq26AoAAAAAAMBULV2Sveu607qu+4uu697cdd13uq7ru677h0XXCwAAAACA6dl/0RVYgNOTXC/JuUk+n+Qai60OAAAAAABTtXQj2ZP8dpKrJTkyyW8uuC4AAAAAAEzY0o1k7/v+TbO/d123yKoAAAAAADBxyziSHQAAAAAA9ghJdgAAAAAAGGnppovZU04++eR+0XXYV57xjGckSR760IcutB77wjLFmoh3qxPv1iberU28W9cyxZqId6sT79Ym3q1tmeJdpliT5Yt35swzz9yKc0Jv+tzjT//0T+e0007L/e9//0VXZT326jFiJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjLT/oiuwr3Vdd2qSU9uPx7Y/T+q67vnt72f3ff/wfVwtAAAAAAAmaOmS7ElOTHKfuW1XaiVJPpNEkh0AAAAAgN1auuli+r7/w77vu12UExZdRwAAAAAApmHpkuwAAAAAALCnSLIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjSbIDAAAAAMBIkuwAAAAAADCSJDsAAAAAAIwkyQ4AAAAAACNJsgMAAAAAwEiS7AAAAAAAMJIkOwAAAAAAjCTJDgAAAAAAI0myAwAAAADASJLsAAAAAAAwkiQ7AAAAAACMJMkOAAAAAAAjbSjJ3nXd7buue33XdZ/vuu57Xded1XXdy7uuO2kdn/3bruv6Vq6yyut/OHh9tfIz6/g/btF13YXt/U9Y4z0HdV33wK7r3tl13dld153bdd1Huq57Ztd1x6/vNwEAAAAAsLOu6x7ddd27uq77Ttd1X+u67l+7rvuxuff8fNd1r2uv913XnbyY2i6Pvblf9t9AJZ6c5BFJvp7kVUnOTnKVJHdKcpeu636p7/t/WOOzd0jyK0nOTXL4bv6rFyT59CrbP7Gb+h3RPnveWv9H13X7Jzkjyc2SfDTJi5Ocn+RGSR6U5Je6rrtp3/cf3k0dAQAAAABWc3KSZyd5V5IuyeOSvKHrumv1ff+N9p7Dkrw1yT8keeEiKrmETs5e2i/rSrJ3XXdskocn+UqS6/Z9/9XBa7dK8sZWqZ2S7F3XXTLJ3yR5aZJjk9xyN//d8/u+P3M99Zrz50mOSvLHSZ64xnvunEqwn5Hkp/u+3z6o5x8l+YNUnL884v8HAAAAAJZc3/e3Hf7cdd0vJvl2Ki/5r+09f99eu8Q+r+AecMEFF+TCCy/MGWeckQMOOCD3ute9cuCBBy66Wru0N/fLeqeLOb699x3DBHv7j9+U5Jwkl1zjs89tfz5wIxXbiK7r7pTkfkkenOSLu3jrldqf/zZMsDevbn+uFQcAAAAAwEYdkcqtfnPRFdkTLrjggpx22mnZvn17vvrVr+aFL3xhTjvttFxwwQWLrtpG7bH9st4k+8eTXJDkxvNZ/K7rbtEq9Ib5D3Vdd98kpyb59b7vv77O/+vmXdc9vOu6R3Zdd7fd3TXouu5SqZHyr1prupqBD7U/b9d13XzsP9f+3CkOAAAAAICR/jzJ+5O8bcH12CNe9KIX5Zxzztlh2znnnJMXvehFC6rRaHtsv3R936/vjV330CRPT83F/qrU3OxXTnLHJP+d5N5z08gcn+QDSf6l7/tfbNvOTE0Xc9W+73eYY73ruj9M8thV/uvzkzwlyR/0q1S267pXp4b0X7vv+6+0xP7zkjyx7/vT597bJXlFkp9P8uFUQv2CJDdIcvMkf53kYX3f/3BdvxQAAAAAgDV0Xff0JHdPcvO+789a5fVLJPlakluNnEJ7n7vVrW71hiS3XuWlN7zpTW+6zb6uzxh7er+se+HTvu+f0XXdp5P8XZJfG7z0idQ86sME+7bUIqTnpqZwWY//Sc2FfmaSLyW5VJKfTvKEJKcn2S/J7w0/0HXdL6eS/Hfr+/4r64ih77rutFQy//Qk1xq8fEaSf5RgBwAAAAAuqq7r/iyVyL3VaoncqXrTm950yqLrcFHsjf2y3uli0nXdI1KjwJ+fGsF+WGoE+FlJXtR13Z8O3v7bqRHrv9b3/brmtOn7/pV93z+v7/tP9X3//b7vP9v3/d8m+dkkP0jy8OHUMV3XnZDkGUle3vf9y9YZw8GpBVh/JzVH/GVSi6X+bGre+f9u87sDAAAAAIzSdd2fJ7lHkp/q+/6ji64PZW/tl3Ul2buuOznJk1NTvzys7/uz+r4/r+/79ya5c5IvJPmdruuu1HXd1ZI8Mcnz+r7/94tawfZ/vDPJAUlOGrz0d0m+l+QBG/jnHpXkrkke0/f9c/q+/3Lf99/p+/61SU5r/8efX9Q6AwAAAADLqeu6v0xyvyT3TPLNruuObeXwwXsu1nXdiUl+rG26Std1J3Zdd+y+r/Fy2Jv7Zb0j2WeLgr5p/oW+789LJcG3Jfnx1BQsByW5X9d1/bCkRrcnycfbtlPX+f9/rf152GDb9VNTynxt7v94Xnv9MW3bq9YZx/+kVpI9vuu6i6+zXgAAAAAAQw9IckRqeuovDcrDB++5Y5L3ZSVP+Tft59/Yd9VcOnttv6x3TvaD2p+XXOP12fYLknwuyf+3xvtun+TYJC9P8p0kn97df9x13QGphHpSU9PMvDDJoat85KpJbpFaGfY9qV/CzJpxdF13UOqXnFQcAAAAAAAb0vd9t473PD81LTf7yN7cL13f97t/U9f9Qmou868kuUHf918YvHa7JP+W5Pwkl+v7/uu7+HfOTI1mv2rf958YbD8iyWX7vv+/ufcfmOTPUncZPprk2n3fb99NXe+bGs3+xL7vT5977dlJfjN1t+L2fd+fP3jtj1PTybyr7/sb7+r/AAAAAACAZP0j2V+R5A1JTknyka7rXpnky0mumZqCpUvyqF0l2Hfj4u3ffXeSj6SG6V8yya2SXDHJ2UnusbsE+zo8Mckdktw6yUe7rvuP1LzuN0ty4/b3h1zE/wMAAAAAgCWxriR73/fbu6772SQPTHL31GKnhyb5RpJ/T/LMvu9ffxHq8Y0kz0olum+b5GKpKVs+mVpw9el933/1Ivz7SZK+77/Qdd31kzwyNXXN/VJzyX8p9RjAk632CwAAAADAeq1ruhgAAAAAAGBn2xZdAQAAAAAAmCpJdgAAAAAAGEmSHQAAAAAARpJkBwAAAACAkSTZAQAAAABgJEl2AAAAAAAYSZIdAAAAAABGkmQHAAAAAICRJNkBAAAAAGCk/x/XdqGc3dSOGQAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 1800x720 with 2 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "msno.matrix(df)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c9803bfc",
   "metadata": {},
   "source": [
    "From the plot above, we can see that our data is very dense. There are no missing values. For examples of what the matrix would look like with missing data, check out the [missingno docs](https://github.com/ResidentMario/missingno#matrix). "
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}